
NanoGround

User Manual
Guidelines for Installation, Configuration and Usage of NanoGround

MAN 1072373

December 10, 2025

Revision 1.4

NanoGround User Manual
Guidelines for Installation, Configuration and Usage of NanoGround

© Copyright 2025 GomSpace A/S. All rights reserved.

Document reference: MAN 1072373
Source reference: doc-nanoground-user-manual
Date: December 10, 2025
Revision: 1.4

Information contained in this document is up-to-date and correct as at the date of issue. As GomSpace A/S cannot
control or anticipate the conditions under which this information may be used, each user should review the
information in specific context of the planned use. To the maximum extent permitted by law, GomSpace A/S will not
be responsible for damages of any nature resulting from the use or reliance upon the information contained in this
document. No express or implied warranties are given other than those implied mandatory by law.

GomSpace A/S
Langagervej 6, 9220 Aalborg East
Denmark
Phone: +45 71 741 741
www.gomspace.com

www.gomspace.com

NanoGround User Manual
Revision 1.4

Contents

List of Figures v

List of Tables vi

List of Listings vii

List of Abbreviations viii

1 Introduction 2
1.1 Purpose . 2
1.2 Scope . 2
1.3 Structure . 2
1.4 Related Documents . 3

2 Getting Started 4
2.1 Included Components . 4
2.2 Dependencies . 4

2.2.1 Installing Docker . 5
2.2.2 Installing Python . 6

2.3 Installation . 6
2.3.1 Unpacking NanoGround . 6
2.3.2 Installing NanoGround . 6
2.3.3 Configuring NanoGround Deployment . 6
2.3.4 Starting NanoGround . 7
2.3.5 Accessing NanoGround . 7

3 System Overview 8

4 Configuration and Status Monitoring 10
4.1 Configuration Endpoint . 11

4.1.1 Listing Available Configuration Parameters . 11
4.1.2 Retrieving a Configuration Parameter Value . 11
4.1.3 Changing a Configuration Parameter Value . 12

4.2 Status Endpoint . 12
4.2.1 Listing Available Status Parameters . 12
4.2.2 Retrieving a Status Parameter Value . 13
4.2.3 Retrieving Status Parameter Values in Bulk . 13

4.3 Integrating With Configuration and Status API . 13

5 Connecting with NanoCom Link SX 14
5.1 Kratos qRadio for S-band . 14
5.2 Kratos qMR/qRX for X-band . 16
5.3 KSAT Lite for S- and X-band . 17
5.4 Newtec MDM9000 for X-band . 17
5.5 Leaf Space Leaf Line TTC for S-band . 18
5.6 Custom Equipment for S- and X-band . 19

ii

NanoGround User Manual
Revision 1.4

5.6.1 Uplink . 20
5.6.2 Downlink . 21

6 Connecting with NanoCom AX2150 23
6.1 Ettus USRP . 23

6.1.1 Doppler Compensation . 25
6.2 KSAT Lite . 26
6.3 Leaf Space Leaf Line TTC for S-band . 28
6.4 RS-422 via Cable . 29

7 Accessing IPv4 Network 30
7.1 Configuring the Network Interface . 30
7.2 Accessing NanoCom Link SX Remotely . 31
7.3 Transferring Files to/from NanoCom Link SX . 32
7.4 Routing IPv4 via a NanoCom Link SX . 32
7.5 Accessing NanoCom AX2150 . 32

8 Accessing CSP Network 33
8.1 Configuring the Network Address and Routing . 33
8.2 Sending and Receiving CSP Packets . 33
8.3 Using Multiple Radio Uplinks . 34

9 Using GOSH CLI 35
9.1 Accessing GOSH CLI . 35
9.2 Available Commands . 35
9.3 Programmatic Access to GOSH CLI . 36

10 Receiving and Accessing Beacon Data 37
10.1 Beacon System Overview . 37
10.2 Providing Beacon Specifications . 38
10.3 Receiving Beacon Data Over CSP . 39
10.4 Receiving Beacon Data From Files . 40
10.5 Accessing Parsed Received Data . 40

11 Receiving and Accessing GSUFTP Data 42
11.1 GSUFTP Overview . 42
11.2 Persistence of Received Files . 42
11.3 Accessing Received Files . 42
11.4 Monitoring . 43

12 Security 44
12.1 Installation Secrets . 44
12.2 Key Management . 44

12.2.1 Master Keys . 44
12.2.2 Session Keys . 45
12.2.3 Invocation Counter . 45
12.2.4 Protection Against Replay Attacks . 45
12.2.5 Key States . 45

iii

NanoGround User Manual
Revision 1.4

12.2.6 Automatic Key Rollover . 46
12.3 Key Storage . 47
12.4 Preparing master keys . 47
12.5 Deriving session keys . 48
12.6 Operational Workflows . 49

12.6.1 Before Launch . 49
12.6.2 After Launch . 49

12.7 Enabling the Security Feature . 52
12.8 Security Telemetry . 52
12.9 NanoGround Endpoints . 54

13 Updating NanoGround 55

14 References 56

iv

NanoGround User Manual
Revision 1.4

List of Figures

3.1 Overview of NanoGround with user interfaces highlighted. 8

4.1 NanoGround Swagger UI. 10

5.1 Overview of supported Kratos qRadio setup. 14
5.2 Overview of supported Kratos qMR/qRX setup. 16
5.3 Overview of supported KSAT lite setup. 17
5.4 Overview of supported Newtec MDM9000 setup. 17
5.5 Overview of supported Leaf Space TTC setup. 18
5.6 Overview of custom connector setup. 19

6.1 Overview of supported Ettus USRP setup. 23
6.2 Overview of supported Kongsberg Satellite Services (KSAT) lite setup. 26
6.3 Overview of supported Leaf Space TTC setup. 28

10.1 Overview of beacon and housekeeping system. 37

11.1 Overview of GSUFTP use-case. 42

12.1 Key state transitions. 46

v

NanoGround User Manual
Revision 1.4

List of Tables

1 Changelog . 1

2.1 NanoGround components. 4

5.1 NanoGround qRadio connector essential configuration parameters. 15
5.2 NanoGround qRadio connector essential status parameters. 15
5.3 NanoGround qMR/qRX connector essential status parameters. 16
5.4 NanoGround MDM9000 connector essential status parameters. 18
5.5 NanoGround Link Connect Leaf Space TTC connector essential configuration parameters. . 19
5.6 NanoGround Link Connect Leaf Space TTC connector essential status parameters. 19

6.1 NanoGround USRP connector essential configuration parameters. 24
6.2 NanoGround USRP connector essential status parameters. 25
6.3 NanoGround KSAT connector essential configuration parameters. 27
6.4 NanoGround KSAT connector essential status parameters. 27
6.5 NanoGround AX Connect Leaf Space TTC connector essential configuration parameters. . . 28
6.6 NanoGround AX Connect Leaf Space TTC connector essential status parameters. 28

11.1 NanoGround GSUFTP service essential status parameters. 43

12.1 NanoGround adapter security configuration parameters. 52
12.2 NanoGround adapter security status parameters. 53

vi

NanoGround User Manual
Revision 1.4

List of Listings

5.1 Example of reading uplink data in custom connector written in Python. 20
5.2 Example of writing downlink data in custom connector written in Python. 21

6.1 Example Doppler compensation configuration for downlink. 25
6.2 Example Doppler compensation configuration for uplink. 25

7.1 Interface configuration for the rf0 interface. 30

8.1 Example of connecting C application to NanoGround CSP network via ZMQHUB. 33

10.1 Example of satellite beacon specification file. 38
10.2 Example of ground beacon specification file. 38
10.3 Example of script to retrieve all parsed beacon data. 41

12.1 Active session keys on both radio and ground. 49
12.2 Deriving and activating new session keys on both sides. 50
12.3 New session keys. 50
12.4 Destroying a master key with children. 51

vii

NanoGround User Manual
Revision 1.4

List of Abbreviations

AES256 Advanced Encryption Standard 256-bit key length.

API application programming interface.

CCSDS Consultative Committee for Space Data Systems.

CLI command-line interface.

CRC cyclic redundancy check.

CSP Cubesat Space Protocol.

eMMC embedded multi-media controller.

GCM Galois/Counter Mode.

GOSH GomSpace Shell.

GSUFTP GomSpace Unidirectional File Transfer Protocol.

HMAC Hash-based Message Authentication Code.

HTTP Hypertext Transfer Protocol.

IP Internet Protocol.

IPv4 Internet Protocol version 4.

IV initialization vector.

JSON JavaScript Object Notation.

KSAT Kongsberg Satellite Services.

LEOP launch and early orbit phase.

MQTT Message Queuing Telemetry Transport.

OBC on-board computer.

OS operating system.

PDF Portable Document Format.

REST representational state transfer.

RF radio frequency.

RX receive.

SSH Secure Shell.

TCP Transmission Control Protocol.

viii

NanoGround User Manual
Revision 1.4

TLE two-line element.

TLS Transport Layer Security.

TX transmit.

UDP User Datagram Protocol.

UI user interface.

URL uniform resource locator.

USB universal serial bus.

USRP Universal Software Radio Peripheral.

ZMQ ZeroMQ.

ix

NanoGround User Manual
Revision 1.4

Changelog

Version Change

1.4 Add Leaf Space Leaf Line TTC connector documentation for NanoGround AX Connect.
Update Leaf Space Leaf Line TTC connector documentation for NanoGround Link Connect
with new attribute names.

1.3 Add description of configurable threshold for auto-suspend crypto keys.
Add description of mitigations in case of compromised crypto keys.

1.2 Add ‘gs-key-transit’ to components table.
1.1 Add ‘Security’ chapter.
1.0 Initial revision.

Table 1: Changelog

1

NanoGround User Manual
Revision 1.4

1 Introduction

1.1 Purpose
This document presents an overview of the GomSpace NanoGround software product as well as detailed
guidelines for installation, configuration, and usage in various scenarios.

1.2 Scope
This document is applicable within the scope of using NanoGround for ground segment integration of
GomSpace satellite products and third-party ground station equipment. It does not describe the satellite
products, but focuses on how to use NanoGround to integrate them into the ground segment. The doc-
ument is intended for system integrators, software engineers/developers, satellite operators, and other
users who need to set up and operate a satellite ground infrastructure. The document is focused on the
user interfaces of NanoGround and does not provide in-depth details on the internal workings or technical
aspects of NanoGround.

1.3 Structure
The document is structured as follows:

• Section 2 describes the necessary steps for getting started with NanoGround. This includes installa-
tion of dependencies, installation of NanoGround, initial configuration, and starting the NanoGround
services.

• Section 3 provides a high-level overview of the NanoGround system and its components with em-
phasis on the user interfaces.

• Section 4 describes the representational state transfer (REST) application programming interface
(API) for configuration and monitoring of NanoGround.

• Section 5 describes how to connect NanoGround to a satellite using a NanoCom Link SX radio.
• Section 6 describes how to connect NanoGround to a satellite using a NanoCom AX2150 radio.
• Section 7 describes how to configure and use the Internet Protocol version 4 (IPv4) network interface

provided by NanoGround.
• Section 8 describes how to configure and use the Cubesat Space Protocol (CSP) network interface

provided by NanoGround.
• Section 9 describes how to use the GomSpace Shell (GOSH) command-line interface (CLI) service for

high-level interaction with GomSpace control and data protocols.
• Section 10 describes how to receive and access beacon data from a GomSpace on-board computer

(OBC) with NanoGround.
• Section 11 describes how to receive and access GomSpace Unidirectional File Transfer Protocol

(GSUFTP) data from a NanoCom Link SX radio.
• Section 13 describes how to update NanoGround to a new version or revert to a previous version.

2

NanoGround User Manual
Revision 1.4

1.4 Related Documents
This document is part of the NanoGround documentation package. For a list of documents in the
NanoGround documentation package see Section 2.1.

3

NanoGround User Manual
Revision 1.4

2 Getting Started

Follow the steps described in this section to install and run NanoGround.

2.1 Included Components
The components included in a NanoGround delivery are listed in Table 2.1. Note the extensions are optional
and may not be part of individual NanoGround deliveries. If any items are missing, please contact GomSpace
support.

Component Type Reference Description

Core Tar archive 111430 Archive containing core component and main
installer script for NanoGround.

Link Connect Binary file 111431 Optional software extension to NanoGround
that facilitates communication with GomSpace
satellites using the NanoCom Link products.

AX Connect Binary file 111432 Optional software extension to NanoGround
that facilitates communication with GomSpace
satellites using the NanoCom AX products.

Beacon Parser Binary file 111724 Optional software extension to NanoGround
that parses and extracts GomSpace beacon
data into a database.

User Manual PDF document 1072373 Detailed overview and usage guidelines for var-
ious scenarios.

Datasheet PDF document 1065505 Technical details and performance specifica-
tions for NanoGround.

Release Notes PDF document 1057606 Summary of changes in each NanoGround re-
lease.

GomSpace Key Transit application Tar archive 1074098 Archive containing the gs-key-transit tool
for generating cryptographic keys.

Table 2.1: NanoGround components.

2.2 Dependencies
NanoGround has been verified to work on Ubuntu Server 22.04. However, it should be compatible with
most GNU/Linux operating systems as it is distributed as Docker containers. To get started ensure the
following dependencies are installed on the target system:

• Docker in version 25.0.4 or later
• Python in version 3.8 or later

4

NanoGround User Manual
Revision 1.4

2.2.1 Installing Docker

The installation process may vary depending on the operating system, but generally Docker can be installed
by running the following commands:� �

curl -fsSL https://get.docker.com -o get-docker.sh
sudo sh get-docker.sh� �

Once installed, enable and start the Docker service using the following commands:� �
sudo systemctl enable docker
sudo systemctl start docker� �

To enable Docker to be run without root access run the following commands:� �
sudo groupadd docker
sudo usermod -aG docker $USER� �

Log the user out and back into the system to apply the changes. To test if the docker service is running and
working, run the following command:� �

docker run hello-world� �
The output should look similar to the following:� �

Unable to find image 'hello-world:latest' locally
latest: Pulling from library/hello-world
c1ec31eb5944: Pull complete
Digest: sha256:6352af1ab4ba4b138648f8ee88e63331aae519946d3b67dae50c313c6fc8200f
Status: Downloaded newer image for hello-world:latest

Hello from Docker!
This message shows that your installation appears to be working correctly.

To generate this message, Docker took the following steps:
1. The Docker client contacted the Docker daemon.
2. The Docker daemon pulled the \lstinline{hello-world} image from the Docker Hub.
(amd64)
3. The Docker daemon created a new container from that image which runs the
executable that produces the output you are currently reading.
4. The Docker daemon streamed that output to the Docker client, which sent it
to your terminal.

To try something more ambitious, you can run an Ubuntu container with:
$ docker run -it ubuntu bash

Share images, automate workflows, and more with a free Docker ID:
https://hub.docker.com/

For more examples and ideas, visit:
https://docs.docker.com/get-started/� �

If logging out and back in does not work, try a full system restart.

5

NanoGround User Manual
Revision 1.4

2.2.2 Installing Python

Python is likely already installed. It can be installed on Ubuntu by running the following commands:� �
sudo apt update
sudo apt install python3� �

To verify that Python3 is installed correctly, run:� �
python3 --version� �

The output should look similar to the following:� �
Python 3.10.6� �

2.3 Installation
2.3.1 Unpacking NanoGround

NanoGround is distributed as a tar archive containing an installer script. Extensions are distributed as
separate .bin files and must be in the same directory as the installer script. The installer script looks for
them during installation and automatically integrates them. Unpack the tar archive in the location where
NanoGround should be installed:� �

tar -xvf nanoground-x.y.z.tar� �
Note the x.y.z in the filename, which should be replaced with the actual version number of the
NanoGround release you are installing. Ensure any extensions you want to install are in the same
directory.

2.3.2 Installing NanoGround

After unpacking, run the installer:� �
./nanoground-x.y.z.install� �

This script automatically installs NanoGround and any extensions located in the same directory. The script
also runs a deployment configuration to configure fundamental options for the NanoGround deployment.
As part of the installation process, a cryptographic key file called keystore-password.txt is generated.
If the file already exists, the existing file is used instead.

2.3.3 Configuring NanoGround Deployment

The NanoGround installation script runs a deployment configuration to set up the NanoGround deployment.
The script may query the user for some basic information about the deployment, depending on the included
extensions. If unsure about any of the options, the default values can be selected by pressing Enter without
entering anything. The configuration cannot be changed at runtime but can be re-run at any time using
the configure.sh script in the NanoGround main folder.

6

NanoGround User Manual
Revision 1.4

2.3.4 Starting NanoGround

When installation is complete, navigate into the NanoGround main folder named nanoground-x.y.z. The
following scripts are present in the main folder:

• start.sh - Starts NanoGround.
• stop.sh - Stops NanoGround.
• configure.sh - Re-runs the deployment configuration script. Note that NanoGround must be

restarted after running this script for the changes to take effect.
• destroy.sh - Deletes all NanoGround containers while configuration and data remains.

To start NanoGround, run the start.sh script:� �
./start.sh� �

NanoGround should now be running and accessible on the local machine. You can verify that all the services
are running by running:� �

docker ps� �
The output lists a number of docker containers. The container names starting with nanoground- are
associated with NanoGround and should be running.

2.3.5 Accessing NanoGround

When NanoGround is running, it provides access to a REST API for control and monitoring. The REST API
provides an OpenAPI documentation page (also known as “swagger documentation”) hosted by default
on port 8000 at the /api/v1/docs endpoint. To access it enter the following in a browser

http://localhost:8000/api/v1/docs

Note that this is not intended as user interface, but rather as a developer interface to the NanoGround REST
API. Currently, NanoGround does not provide a user interface and the user is expected to use the REST API
directly or through a custom user interface. The remainder of this user manual describes how to proceed
with NanoGround.

7

http://localhost:8000/api/v1/docs

NanoGround User Manual
Revision 1.4

3 System Overview

A high-level overview of NanoGround with user interfaces highlighted is shown in Figure 3.1. Note some
NanoGround components have been omitted for clarity as these are not relevant for the user interfaces
and overall functionality.

IPv4
Network
Interface

GS2000
Connector

qRadio
Connector

MDM9000
Connector

Custom
Connector

qMR/qRX
Connector

Leaf Space
TT&C Connector

KSAT
Connector

USRP Connector

CSP ZMQ
Proxy

GomSpace
Shell

Service

REST API
Gateway

GSUFTP
Receiver

Beacon
Parser

Files in
f ilesystem

Beacon data
in database

CSP over
ZMQ (TCP)

Docker
attach to
terminal

Network
Interface

HTTP REST
API

Part of Core

Part of Link Connect

Part of AX Connect

Part of Beacon Parser

Leaf Space
TT&C Connector

Figure 3.1: Overview of NanoGround with user interfaces highlighted.

The NanoGround system can connect to a satellite with a NanoCom AX2150 and/or a NanoCom Link SX
radio onboard. The NanoGround Link connect extension is used to connect with a NanoCom Link SX radio.
The NanoGround AX connect extension is used to connect with a NanoCom AX2150 radio. For each radio,
NanoGround supports different ground station providers and ground station equipment as indicated in
Figure 3.1. Common for these is that they provide either a CSP or an IPv4 connection. Connecting to a
satellite using a NanoCom AX2150 or NanoCom Link SX radio is described in more detail in Sections 5 and 6,
respectively.

The fundamental interface is the IPv4 network interface. This can be accessed directly by the user and is
also used by other NanoGround services to communicate with satellite subsystems. The user can use it for
direct access to a NanoCom Link SX radio and by extension to an IPv4 network onboard the satellite. For
NanoCom AX2150 related connectivity, the IPv4 network interface is typically not accessed directly but
indirectly through other NanoGround services. The IPv4 network interface is described in more detail in
Section 7.

The CSP ZeroMQ (ZMQ) proxy provides direct access to the CSP network. This interface can be used if other
ground services need to communicate with the satellite subsystems using CSP. The CSP ZMQ interface is
described in more detail in Section 8.

8

NanoGround User Manual
Revision 1.4

The GOSH service provides access to a GOSH CLI offering a human interface to the GomSpace control
protocol. Operators can use this interface to issue control and data commands over CSP to the satellite
subsystems. The GOSH service translates the user commands into appropriate CSP packets and transmits
them to the satellite subsystems using either a NanoCom AX or NanoCom Link radio link. The GOSH service
is described in more detail in Section 9.

The beacon parser service uses the CSP ZMQ proxy to receive CSP packets containing beacon data from the
satellite. The extracted beacon data is stored in a database for later retrieval. The beacon parser service is
described in more detail in Section 10.

The GSUFTP service provides a reception service for GSUFTP packets from a NanoCom Link SX subsystem.
The GSUFTP service receives User Datagram Protocol (UDP) packets with transmitted file chunks and recon-
structs the transmitted files on the local filesystem. This is described in more detail in Section 11.

The REST API gateway service provides programmatic access to all control and monitoring functions of
NanoGround. In addition, it provides programmatic access to the GOSH service allowing external systems
to issue high-level commands towards satellite subsystems. The REST API is described in more detail in
Section 4.

9

NanoGround User Manual
Revision 1.4

4 Configuration and Status Monitoring

NanoGround provides a REST API for configuration and monitoring of all its services. In the following,
all uniform resource locators (URLs) are relative to the NanoGround server hostname and port, which is
http://localhost:8000 when running locally.

Figure 4.1: NanoGround Swagger UI.

The REST API is available at at /api/v1/ and documented using the OpenAPI standard. The documentation
is available at /api/v1/openapi.json. For exploration and early testing, a Swagger user interface (UI) is
available at /api/v1/docs/. The Swagger UI is a web-based interface, as shown on Figure 4.1, that allows
you to interact with the REST API and test its endpoints [1].

The REST API provides the following endpoints:

• /api/v1/config/ for configuration of NanoGround services.
• /api/v1/status/ for monitoring the status of NanoGround services.
• /api/v1/gosh/ for programmatic access to the GOSH service.

The config and status endpoints are described in more detail in the following sections. The GOSH endpoint
is described in more detail in Section 9. Note that the following sections should be supplemented with
the OpenAPI documentation available at /api/v1/openapi.json for more details on the endpoints,
parameters, and return codes.

10

/api/v1/docs/

NanoGround User Manual
Revision 1.4

4.1 Configuration Endpoint
NanoGround provides two kinds of configuration:

• Deployment configuration
• Runtime configuration

The deployment configuration is used to configure the fundamentals of a NanoGround deployment, in-
cluding which services that are part of the deployment. This configuration is performed as part of the
installation as described in Section 2. The REST API provides access to the runtime configuration which can
generally be changed at any time without restarting NanoGround. The runtime configuration is persisted
between restarts of NanoGround.

4.1.1 Listing Available Configuration Parameters

Use the following endpoint to retrieve an overview of all available runtime configuration options:

GET /api/v1/config

This returns a JavaScript Object Notation (JSON) object similar to the following:� �
{

"nanoground_gosh_cli.csp_server.address": {
"type": "uint8_t",
"description": "CSP address of the gateway. Note changing this restarts the service!"

},
...

}� �
Each top-level object corresponds to a configuration parameter whose key is the name of the param-
eter and values are meta-data information. The configuration parameter naming follows the pattern
<service>.<module>.<parameter> where <service> is the name of the service, <module> is a distinct
part of the service, and <parameter> is the name of the parameter.

4.1.2 Retrieving a Configuration Parameter Value

To retrieve the value of a configuration parameter use the following endpoint:

GET /api/v1/config/<parameter>

This returns a JSON object similar to the following:� �
{

"name": "nanoground_gosh_cli.csp_server.address",
"value": 27

}� �
when retrieving the value of the nanoground_gosh_cli.csp_server.address parameter.

11

NanoGround User Manual
Revision 1.4

4.1.3 Changing a Configuration Parameter Value

To change the value of a configuration parameter use the following endpoint:

PUT /api/v1/config/<parameter>?value=<value>

For example, to change the nanoground_gosh_cli.csp_server.address parameter to 28, issue a Hy-
pertext Transfer Protocol (HTTP) PUT request to the following URL: http://localhost:8000/api/v1/
config/nanoground_gosh_cli.csp_server.address?value=28. This does not return any data, but
a 200 response code if the request was successful.

It is important to note, that some services may not be able to completely verify configuration changes at
the time of the request. The configuration parameters should be considered a target state, and the services
attempt to reach this state. To verify the actual state of services, use the status endpoint described in
Section 4.2.

4.2 Status Endpoint
The status endpoint provides an overview of the current state of all NanoGround services as well as their
status. The status parameters can be divided into two categories:

• Parameters corresponding to a configuration parameter which describes the actual state of the
service.

• Parameters used report various statistics that are not part of the configuration.

The status parameters with matching configuration parameters should be compared to the configuration
parameters to verify that the service is in the expected state. The status parameters used for statistics are
not directly related to the configuration parameters and are used to provide insights into the service’s
operation. These parameters are typically reset when NanoGround is restarted, but some may persist
across restarts depending on the service implementation.

4.2.1 Listing Available Status Parameters

Use the GET /api/v1/status endpoint to retrieve an overview of all NanoGround services and their
current state. This returns a JSON object similar to the following:� �

{
"nanoground_gosh_cli.csp_server.address": {

"type": "uint8_t",
"description": "CSP address of the gateway. Note changing this restarts the service!"

},
...

}� �
This is very similar to the configuration endpoint, but the parameters describe the current state of the
services instead of the target state.

12

http://localhost:8000/api/v1/config/nanoground_gosh_cli.csp_server.address?value=28
http://localhost:8000/api/v1/config/nanoground_gosh_cli.csp_server.address?value=28

NanoGround User Manual
Revision 1.4

4.2.2 Retrieving a Status Parameter Value

To get the value of a status parameter use the following endpoint:

GET /api/v1/status/<parameter>

This returns a JSON object similar to the following:� �
{

"name": "nanoground_gosh_cli.csp_server.address",
"value": 27

}� �
when retrieving the value of the nanoground_gosh_cli.csp_server.address parameter.

4.2.3 Retrieving Status Parameter Values in Bulk

The values of all status parameters can be retrieved in bulk using the following endpoint:

GET /api/v1/metrics

This returns a plain text response in Prometheus exposition format [2] similar to the following:� �
HELP nanoground_gosh_cli_csp_server_address CSP address of the gateway. Note changing this
restarts the service!
TYPE nanoground_gosh_cli_csp_server_address gauge
nanoground_gosh_cli_csp_server_address 28.0� �

This format is suitable for ingestion by multiple observability systems using e.g. Prometheus or Grafana
Agent [3, 4].

4.3 Integrating With Configuration and Status API
To integrate with the REST API, you can use any programming language that supports HTTP requests.
For example, in Python, you can use the requests library to make HTTP requests to the NanoGround
REST API. The Swagger Codegen tool can also be used to generate client libraries in various programming
languages based on the OpenAPI specification [5]. For details regarding the different formats and return
codes, refer to the OpenAPI documentation available at /api/v1/openapi.json or the Swagger UI at
/api/v1/docs/.

For simple use cases, the Swagger UI can be used to interact with the REST API directly. Alternatively, you
can use command-line tools like curl to make HTTP requests to the NanoGround REST API. As an example,
to change the value of the CSP address parameter, you can use the following curl command from a Linux
shell:� �

curl -X 'PUT' \
'http://localhost:8000/api/v1/config/nanoground_gosh_cli.csp_server.address?value=28' \
-H 'accept: */*'� �

13

NanoGround User Manual
Revision 1.4

5 Connecting with NanoCom Link SX

This section is only applicable if the NanoGround Link Connect extension is installed. NanoGround can
connect to a NanoCom Link SX satellite radio using different ground station providers and ground station
equipment. During deployment configuration of NanoGround, the different services can be selected
depending on the ground station provider or equipment used. Note that the connectors only handle the
data interface – they do not access any control interfaces and do not configure the equipment. This must
be done separately by e.g. the mission control system.

5.1 Kratos qRadio for S-band
NanoGround Link Connect includes a Kratos qRadio connector to support the setup depicted on Figure 5.1.
This setup includes bidirectional S-band communications with a NanoCom Link S or Link SX radio.

Satellite

NanoGround

Mission Control Services

NanoCom Link SX

qRadio
Connector

Kratos
qRadio

TCP/IP

S-band RF Link

TCP/IP

TCP/IP

Figure 5.1: Overview of supported Kratos qRadio setup.

To enable the qRadio connector, select y (default) when prompted whether to enable qradio during
deployment configuration. The qRadio connector uses the following qRadio interfaces:

• Command Sender with qRadio configured as server
• Command Acknowledgment with qRadio configured as server
• TLM Output with qRadio configured as server with data header type ’NameValuePairs’

In uplink, the connector keeps a maximum of 10 packets queued in the pipeline. To mitigate issues with
connecting to qRadio via a proxy, the connector attempts to reconnect if it detects a connection failure.
The Command Sender/Acknowledgment connection is re-established if no acknowledgment is received
for a configurable amount of time (default is 10 seconds). In cases where no user data is transmitted for
a configurable amount of time (default is 8 seconds), a dummy 1-byte transmission is sent to keep the
connection alive. For the TLM Output interface, the connection is re-established if no messages are received
for a configurable amount of time (default is 5 seconds). To disable the reconnection feature on the any of
the interfaces, set the timeout to 0 in the run-time configuration.

During run-time, the qRadio connector can be controlled and monitored using the REST API as described in
Section 4. The essential configuration and status parameters are summarized on Tables 5.1 and 5.2.

14

NanoGround User Manual
Revision 1.4

Parameter Name Description

nlc_qradio_connector.qradio_cmd.ip Internet Protocol (IP) address of the qRa-
dio equipment.

nlc_qradio_connector.qradio_cmd.cmd_sender_port Port to use for the Command Sender in-
terface.

nlc_qradio_connector.qradio_cmd.cmd_ack_port Port to use for the Command Acknowl-
edgment interface.

nlc_qradio_connector.qradio_cmd.disable_connection Put uplink into idle state and do not at-
tempt to connect to the qRadio. Use
this to disable the connector when not
in use.

nlc_qradio_connector.qradio_tlm.ip IP address of the qRadio equipment.
nlc_qradio_connector.qradio_tlm.port Port to use for the TLM output interface.
nlc_qradio_connector.qradio_tlm.disable_connection Put downlink into idle state and do not

attempt to connect to the qRadio. Use
this to disable the connector when not
in use.

Table 5.1: NanoGround qRadio connector essential configuration parameters.

Parameter Name Description

nlc_qradio_connector.qradio_cmd.packets_forwarded Number of uplink packets transmitted
the qRadio equipment.

nlc_qradio_connector.qradio_tlm.frames_forwarded Number of downlink packets received
the qRadio equipment.

nlc_qradio_connector.qradio_cmd.cmd_ack_connected Whether connector is connected to qRa-
dio command sender interface.

nlc_qradio_connector.qradio_cmd.cmd_sender_connected Whether connector is connected to qRa-
dio command acknowledge interface.

nlc_qradio_connector.qradio_tlm.connected Whether connector is connected to qRa-
dio telemetry interface.

Table 5.2: NanoGround qRadio connector essential status parameters.

15

NanoGround User Manual
Revision 1.4

5.2 Kratos qMR/qRX for X-band
NanoGround Link Connect includes a Kratos qMR/qRX connector to support the setup depicted on Figure 5.2.
This setup includes unidirectional X-band downlink communications with a NanoCom Link X or Link SX
radio.

Satellite

NanoGround

Mission Control Services

NanoCom Link SX

qMR
Connector

Kratos
qMR/qRX

X-band RF Link

TCP/IP

Figure 5.2: Overview of supported Kratos qMR/qRX setup.

To enable the qMR/qRX connector, select y (default) when prompted whether to enable qmr during deploy-
ment configuration. When enabling the connector a Transmission Control Protocol (TCP) server port must
be selected during deployment configuration as well. In contrast to the qRadio connector, the qMR/qRX
connector acts as server and expects the Kratos qMR/qRX to be configured as client. During run-time,
the qMR/qRX connector can be monitored using the REST API as described in Section 4. There are no
run-time configuration parameters for the connector. The essential status parameters are summarized on
Table 5.3.

Parameter Name Description

nlc_qmr_connector.input.connected Whether the connector has an ac-
tive connection to the qMR/qRX
equipment.

nlc_qmr_connector.input.frames_received Number of downlink packets re-
ceived the qMR/qRX equipment.

nlc_qmr_connector.dvbs2_processing.packets_dropped_data_error Number of packets dropped due
to data errors. This can indicate
misconfiguration.

nlc_qmr_connector.dvbs2_processing.packets_dropped_missing_data Number of packets dropped due
to length errors. This can indicate
misconfiguration.

nlc_qmr_connector.dvbs2_processing.packets_dropped_no_header Number of packets dropped due
to missing header. This can indi-
cate misconfiguration.

nlc_qmr_connector.dvbs2_processing.packets_dropped_overflow Number of packets dropped due
to input overflow. This can indi-
cate server load issues.

Table 5.3: NanoGround qMR/qRX connector essential status parameters.

16

NanoGround User Manual
Revision 1.4

5.3 KSAT Lite for S- and X-band
The Kratos qRadio and qMR/qRX connectors can be used with the KSAT lite service as depicted on Figure 5.3.
See Section 5.1 and Section 5.2 for details on how to configure the qRadio and qMR/qRX connectors,
respectively.

Satellite

NanoGround

Mission Control Services

NanoCom Link SX

qRadio
Connector

Kratos
qRadio

TCP/IP

S-band RF Link

TCP/IP

TCP/IP

qMR
Connector

Kratos
qMR/qRX

X-band RF Link

TCP/IP

Figure 5.3: Overview of supported KSAT lite setup.

5.4 Newtec MDM9000 for X-band
NanoGround Link Connect includes a Newtec MDM9000 connector to support the setup depicted on Fig-
ure 5.4. This setup includes unidirectional X-band downlink communications with a NanoCom Link X or
Link SX radio.

Satellite

NanoGround

Mission Control Services

NanoCom Link SX

MDM9000
Connector

Newtec
MDM9000

X-band RF Link

UDP

Figure 5.4: Overview of supported Newtec MDM9000 setup.

To enable the Newtec MDM9000 connector, select y (default) when prompted whether to enable mdm9000
during deployment configuration. The MDM9000 connector acts as server and expects the Newtec MDM9000
to be configured as client with UDP as output protocol. The MDM9000 connector expects UDP packets to
arrive on port 21731. During run-time, the MDM9000 connector can be monitored using the REST API as
described in Section 4. There are no run-time configuration parameters for the connector. The essential
status parameters are summarized on Table 5.4.

17

NanoGround User Manual
Revision 1.4

Parameter Name Description

nlc_mdm9000_connector.input.packets_received Number of downlink packets re-
ceived the MDM9000 equipment.

nlc_mdm9000_connector.dvbs2_processing.packets_dropped_data_error Number of packets dropped due
to data errors. This can indicate
misconfiguration.

nlc_mdm9000_connector.dvbs2_processing.packets_dropped_missing_data Number of packets dropped due
to length errors. This can indicate
misconfiguration.

nlc_mdm9000_connector.dvbs2_processing.packets_dropped_no_header Number of packets dropped due
to missing header. This can indi-
cate misconfiguration.

nlc_mdm9000_connector.dvbs2_processing.packets_dropped_overflow Number of packets dropped due
to input overflow. This can indi-
cate server load issues.

Table 5.4: NanoGround MDM9000 connector essential status parameters.

5.5 Leaf Space Leaf Line TTC for S-band
NanoGround Link Connect includes a Leaf Space TTC connector to support the setup depicted on Figure 5.5.
This setup includes bidirectional S-band communications with a NanoCom Link S or Link SX radio.

Satellite

NanoGround

Mission Control Services

NanoCom Link SX

Leaf Space TTC
Connector

Leaf Space TTC

S-band RF Link

MQTT

Figure 5.5: Overview of supported Leaf Space TTC setup.

To enable the Leaf Space TTC connector, select y (default) when prompted whether to enable leaf_ttc
during deployment configuration. When enabling the connector, the following information is requested
during deployment configuration:

• The Message Queuing Telemetry Transport (MQTT) server URL and port to connect to.
• Whether to use Transport Layer Security (TLS) or not.
• The NORAD ID of the satellite to connect to.
• The username to use for MQTT connection.
• The password to use for MQTT connection.

The username and password must be provided at deployment time, the other configuration parameters
can be reconfigured using the REST API at run-time. The essential configuration and status parameters are
summarized on Tables 5.5 and 5.6.

18

NanoGround User Manual
Revision 1.4

Parameter Name Description

nanoground_leaf_ttc_connector@link-leaf-ttc.main.mqtt_url The URL to connect to.
nanoground_leaf_ttc_connector@link-leaf-ttc.main.mqtt_port The port to connect to.
nanoground_leaf_ttc_connector@link-leaf-ttc.main.norad_id The NORAD ID of the satellite (used as root for the

MQTT topics).

Table 5.5: NanoGround Link Connect Leaf Space TTC connector essential configuration parameters.

Parameter Name Description

nanoground_leaf_ttc_connector@link-leaf-ttc.main.mqtt_connected Whether the connector is connected to the Leaf
Space MQTT server.

nanoground_leaf_ttc_connector@link-leaf-ttc.main.mqtt_rx_messages Number of packets received from MQTT server.
nanoground_leaf_ttc_connector@link-leaf-ttc.main.mqtt_tx_messages Number of packets sent to the MQTT server.

Table 5.6: NanoGround Link Connect Leaf Space TTC connector essential status parameters.

5.6 Custom Equipment for S- and X-band
NanoGround Link Connect includes support for a custom connector to support the setup depicted on
Figure 5.6. This setup includes bidirectional S-band communications and/or unidirectional X-band com-
munications with a NanoCom Link SX. Use this setup to connect to custom ground station equipment that
is not supported by the other connectors.

Satellite

NanoGround

Mission Control Services

NanoCom Link SX

Custom
Connector

Custom Equipment

S-band RF Link X-band RF Link

Figure 5.6: Overview of custom connector setup.

To enable the custom connector, select y (default) when prompted whether to enable custom during
deployment configuration. The custom connector requests the following deployment configuration:

• Custom connector path – path on the host machine where a unix socket is created for the custom
connector to communicate with NanoGround.

• Whether the custom connector provides an uplink or not.

By default the unix socket is placed in bind-mounts directory in the NanoGround Link Connect main folder.
For example, for NanoGround version 25.01, the default path is:

nanoground-25.01/nanoground-link-connect-1.3.0/bind-mounts/custom-connector/

19

NanoGround User Manual
Revision 1.4

Inside this directory the unix socket is named custom.sock. The unix socket is a SOCK_SEQPACKET type
socket. If the custom connector supports uplink, it must read packets from the socket and forward them to
the ground equipment. In addition, it must write packets to the socket that are received from the ground
equipment.

5.6.1 Uplink

Packets read from the socket are uplink packets sent by NanoGround. No processing of the data is necessary
except what is required for communication with the ground equipment. That is, packets read from the unix
socket should be transmitted as-is over the radio data link layer. For details on the radio data link layer,
refer to the NanoCom Link SX documentation. A simple Python example of how to read packets from the
unix socket is shown in Listing 5.1. Test packets can be generated by e.g. sending a ping packet from the
NanoGround IP network interface. On Ubuntu this can be done by running the following command:� �

ping 1.2.3.4 -I rf0 -c 1 -W 0.1� �
If the example Python script is running, it prints the ping packet in hex format.

Listing 5.1: Example of reading uplink data in custom connector written in Python.� �
1 #!/usr/bin/env python3
2 import argparse
3 import contextlib
4 import socket
5

6 MTU_BYTES = 65535
7

8

9 def main():
10 # Parse command line arguments
11 parser = argparse.ArgumentParser(
12 description="Receive and print uplink data from a NanoGround data socket.")
13 parser.add_argument(
14 "socket", nargs="?", default="custom.sock", help="Path to the data socket")
15 args = parser.parse_args()
16

17 # Create a UNIX domain socket
18 nanoground_data_socket = socket.socket(socket.AF_UNIX, socket.SOCK_SEQPACKET)
19

20 # Connect to data socket
21 print(f"Connecting to data socket at {args.socket}...")
22 nanoground_data_socket.settimeout(0.5)
23 nanoground_data_socket.connect(args.socket)
24

25 # Continuously receive uplink data from the socket and print it
26 print("Connected to data socket. Press Ctrl+C to exit.")
27 while True:
28 with contextlib.suppress(TimeoutError):
29 # Receive an uplink packet from the socket
30 data = nanoground_data_socket.recv(MTU_BYTES)
31 if not data:
32 raise Exception("Data socket connection closed by peer")
33

34 # Print hexdump of the received uplink packet
35 print("Received data:")

20

NanoGround User Manual
Revision 1.4

36 for i in range(0, len(data), 16):
37 line = " ".join(f"{byte:02x}" for byte in data[i : i + 16])
38 print(f"{i:04x}: {line}")
39 print("")
40

41

42 if __name__ == "__main__":
43 main()� �

5.6.2 Downlink

Packets written to the socket are downlink packets to be received by NanoGround. Note that frame bound-
aries do not need to be preserved and the downlink data can be considered as a byte stream. Data received
on the radio data link layer are expected to be written to the socket as-is – without processing except for
handling of ground equipment protocols. For details on the radio data link layer, refer to the NanoCom
Link SX documentation. A simple Python example of how to write packets to the unix socket is shown
in Listing 5.2. Successful reception of the ping packets can be verified by inspecting packet counters on
the NanoGround IP network interface. On Ubuntu, run the following command to inspect the packet
counters:� �

ip -s link show rf0� �
The receive (RX) packet counter should increase by one for each time the example script is executed.

Listing 5.2: Example of writing downlink data in custom connector written in Python.� �
1 #!/usr/bin/env python3
2 import argparse
3 import socket
4 import time
5

6

7 def main():
8 # Parse command line arguments
9 parser = argparse.ArgumentParser(

10 description="Send a ping to NanoGround data socket.")
11 parser.add_argument(
12 "socket", nargs="?", default="custom.sock", help="Path to the data socket")
13 args = parser.parse_args()
14

15 # Create a UNIX domain socket
16 nanoground_data_socket = socket.socket(socket.AF_UNIX, socket.SOCK_SEQPACKET)
17

18 # Connect to data socket
19 print(f"Connecting to data socket at {args.socket}...")
20 nanoground_data_socket.settimeout(0.5)
21 nanoground_data_socket.connect(args.socket)
22

23 # Send a ping (data is just an example)
24 data = bytes.fromhex(
25 "48454144450000542c4f40004001ffd20a8100010102030408004cde00410001"
26 "b8449b6800000000915f070000000000101112131415161718191a1b1c1d1e1f"
27 "202122232425262728292a2b2c2d2e2f303132333435363732596af45441494c"
28)

21

NanoGround User Manual
Revision 1.4

29 nanoground_data_socket.sendall(data)
30

31 # Wait a moment to ensure NanoGround has received the data before shutting
32 # down the connection
33 time.sleep(0.5)
34

35

36 if __name__ == "__main__":
37 main()� �

22

NanoGround User Manual
Revision 1.4

6 Connecting with NanoCom AX2150

This section is only applicable if the NanoGround AX Connect extension is installed. NanoGround can
connect to a NanoCom AX2150 satellite radio using different ground station providers and ground station
equipment. During deployment configuration of NanoGround, the different services can be selected
depending on the ground station provider or equipment used.

6.1 Ettus USRP
NanoGround AX Connect includes an Ettus Universal Software Radio Peripheral (USRP) connector to support
the setup depicted on Figure 6.1.

Satellite

NanoGround

Mission Control Services

NanoCom AX2150

USRP
Connector

Ettus
USRP

S-band RF Link

USB

Figure 6.1: Overview of supported Ettus USRP setup.

To enable the USRP connector, select y (default) when prompted whether to enable ax-usrp during
deployment configuration. When the USRP connector is enabled, the deployment configuration prompts
for the following additional configuration parameters:

• USRP RX frequency in Hz (default 2 245 000 000 Hz)
• USRP transmit (TX) frequency in Hz (default 2 067 500 000 Hz)
• USRP TX gain in dB (default 60 dB)
• USRP RX gain in dB (default 40 dB)

During run-time, the USRP connector can be controlled and monitored using the REST API as de-
scribed in Section 4. The essential configuration and status parameters are summarized on Tables 6.1
and 6.2. Its worth noting that the hmac_crc_append attributes are used for the transmitter, while the
hmac_crc_verify attributes are used for the receiver.

23

NanoGround User Manual
Revision 1.4

Parameter Name Description

nac-usrp-connector.burst.rx_guard_period Guard period for RX in seconds.
nac-usrp-connector.burst.tx_guard_period Guard period for TX in seconds.
nac-usrp-connector.modulator.symbol_rate Uplink symbol rate in symbols per

second.
nac-usrp-connector.modulator.enable_doppler_compensation Enable Doppler compensation in up-

link.
nac-usrp-connector.modulator.altitude Altitude of ground station in meters.
nac-usrp-connector.modulator.latitude Latitude of ground station in de-

grees.
nac-usrp-connector.modulator.longitude Longitude of ground station in de-

grees.
nac-usrp-connector.modulator.tle_line1 Satellite TLE line 1.
nac-usrp-connector.modulator.tle_line2 Satellite TLE line 2.
nac-usrp-connector.rf_receiver.symbol_rate Downlink symbol rate in symbols per

second.
nac-usrp-connector.rf_receiver.enable_doppler_compensation Enable Doppler compensation in

downlink.
nac-usrp-connector.rf_receiver.altitude Altitude of ground station in meters.
nac-usrp-connector.rf_receiver.latitude Latitude of ground station in de-

grees.
nac-usrp-connector.rf_receiver.longitude Longitude of ground station in de-

grees.
nac-usrp-connector.rf_receiver.tle_line1 Satellite TLE line 1.
nac-usrp-connector.rf_receiver.tle_line2 Satellite TLE line 2.
nanoground-connect-adapter@ax-usrp.hmac_crc_append.enable_crc Enable cyclic redundancy check

(CRC) trailer in uplink.
nanoground-connect-adapter@ax-usrp.hmac_crc_append.enable_hmac Enable Hash-based Message Authen-

tication Code (HMAC) authentication
in uplink.

nanoground-connect-adapter@ax-usrp.hmac_crc_append.hmac_key HMAC key to use in uplink. This is a
128-bit key provided in hexadecimal
notation.

nanoground-connect-adapter@ax-usrp.hmac_crc_verify.enable_crc Expect and verify a CRC trailer in
downlink.

nanoground-connect-adapter@ax-usrp.hmac_crc_verify.enable_hmac Enable HMAC authentication in
downlink.

nanoground-connect-adapter@ax-usrp.hmac_crc_verify.hmac_key HMAC key to use in downlink. This
is a 128-bit key provided in hexadeci-
mal notation.

Table 6.1: NanoGround USRP connector essential configuration parameters.

24

NanoGround User Manual
Revision 1.4

Parameter Name Description

nac-usrp-connector.usrp.uplink_packets Number of uplink packets transmitted to the
USRP equipment.

nac-usrp-connector.adapter.downlink_packets Number of downlink packets received from the
USRP equipment.

nac-usrp-connector.usrp.tx_connected Whether uplink data connection to USRP equip-
ment is active.

nac-usrp-connector.usrp.rx_connected Whether downlink data connection to USRP
equipment is active.

nac-usrp-connector.modulator.doppler_offset Currently applied uplink Doppler compensa-
tion in Hz.

nac-usrp-connector.rf_receiver.doppler_offset Currently applied downlink Doppler compen-
sation in Hz.

Table 6.2: NanoGround USRP connector essential status parameters.

6.1.1 Doppler Compensation

The AX radios use low-bandwidth radio channels, which makes it necessary to compensate for the Doppler
effect. The USRP connector supports Doppler compensation by adjusting the baseband signal sent to the
USRP hardware.

The Doppler compensation is based on two-line element (TLE) data. Based on the TLE data, the connector
calculates the Doppler shift and applies it to the baseband signal.

When enabled, the current Doppler offsets used in the compensation are available in the doppler_offset
status attributes.

The latitude, longitude, and altitude defines the location of the ground station antenna. The host system
clock is used as a reference in calculating the current location of the satellite.

Examples on configuring the Doppler compensation parameters for a ground station at latitude 57.0N,
longitude 10.0E, 75 meters altitude and TLE data for the International Space Station (ISS) are provided in
Listing 6.1 for downlink and Listing 6.2 for uplink.

Listing 6.1: Example Doppler compensation configuration for downlink.� �
1 curl -X 'PUT' 'http://localhost:8000/api/v1/config/nac-usrp-connector.rf_receiver.

enable_doppler_compensation?value=1' -H 'accept: */*'
2 curl -X 'PUT' 'http://localhost:8000/api/v1/config/nac-usrp-connector.rf_receiver.tle_line1?

value=1%2025544U%2098067A%20%20%2025175.16104992%20%20.00007620%20%2000000%2B0
%20%2014032-3%200%20%209999' -H 'accept: */*'

3 curl -X 'PUT' 'http://localhost:8000/api/v1/config/nac-usrp-connector.rf_receiver.tle_line2?
value=2%2025544%20%2051.6364%20272.5136%200002157%20282.3316%20%2077.7431%2015.50212564516241
' -H 'accept: */*'

4 curl -X 'PUT' 'http://localhost:8000/api/v1/config/nac-usrp-connector.rf_receiver.latitude?
value=57.0' -H 'accept: */*'

5 curl -X 'PUT' 'http://localhost:8000/api/v1/config/nac-usrp-connector.rf_receiver.longitude?
value=10.0' -H 'accept: */*'

6 curl -X 'PUT' 'http://localhost:8000/api/v1/config/nac-usrp-connector.rf_receiver.altitude?
value=75.0' -H 'accept: */*'� �

Listing 6.2: Example Doppler compensation configuration for uplink.

25

NanoGround User Manual
Revision 1.4

� �
1 curl -X 'PUT' 'http://localhost:8000/api/v1/config/nac-usrp-connector.modulator.

enable_doppler_compensation?value=1' -H 'accept: */*'
2 curl -X 'PUT' 'http://localhost:8000/api/v1/config/nac-usrp-connector.modulator.tle_line1?

value=1%2025544U%2098067A%20%20%2025175.16104992%20%20.00007620%20%2000000%2B0
%20%2014032-3%200%20%209999' -H 'accept: */*'

3 curl -X 'PUT' 'http://localhost:8000/api/v1/config/nac-usrp-connector.modulator.tle_line2?
value=2%2025544%20%2051.6364%20272.5136%200002157%20282.3316%20%2077.7431%2015.50212564516241
' -H 'accept: */*'

4 curl -X 'PUT' 'http://localhost:8000/api/v1/config/nac-usrp-connector.modulator.latitude?
value=57.0' -H 'accept: */*'

5 curl -X 'PUT' 'http://localhost:8000/api/v1/config/nac-usrp-connector.modulator.longitude?
value=10.0' -H 'accept: */*'

6 curl -X 'PUT' 'http://localhost:8000/api/v1/config/nac-usrp-connector.modulator.altitude?
value=75.0' -H 'accept: */*'� �

6.2 KSAT Lite
NanoGround AX Connect includes a KSAT connector to support the setup depicted on Figure 6.2.

Satellite

NanoGround

Mission Control Services

NanoCom AX2150

KSAT
Connector

KSAT
Lite

S-band RF Link

TCP/IP

Figure 6.2: Overview of supported KSAT lite setup.

To enable the KSAT connector, select y (default) when prompted whether to enable ax-ksat during de-
ployment configuration. During run-time, the KSAT connector can be controlled and monitored using the
REST API as described in Section 4. The essential configuration and status parameters are summarized on
Tables 6.3 and 6.4.

26

NanoGround User Manual
Revision 1.4

Parameter Name Description

nac-ksat-connector.burst.rx_guard_period Guard period for RX in seconds.
nac-ksat-connector.burst.tx_guard_period Guard period for TX in seconds.
nac-ksat-connector.ksat_cmd.enable_connection Try to connect to the command in-

terface specified by the provided IP
address and port.

nac-ksat-connector.ksat_cmd.ip IP of the command sender interface
to connect to.

nac-ksat-connector.ksat_cmd.cmd_sender_port TCP port of the command sender in-
terface to connect to.

nac-ksat-connector.ksat_cmd.cmd_ack_port TCP port of the command acknowl-
edge interface to connect to.

nac-ksat-connector.ksat_tlm.enable_connection Try to connect to the telemetry inter-
face to specified by the provided IP
address and port.

nac-ksat-connector.ksat_tlm.ip IP of the telemetry interface to con-
nect to.

nac-ksat-connector.ksat_tlm.port TCP port of the telemetry interface
to connect to.

nanoground-connect-adapter@ax-ksat.hmac_crc_append.enable_crc Enable CRC trailer in uplink.
nanoground-connect-adapter@ax-ksat.hmac_crc_append.enable_hmac Enable HMAC authentication in up-

link.
nanoground-connect-adapter@ax-ksat.hmac_crc_append.hmac_key HMAC key to use in uplink. This is a

128-bit key provided in hexadecimal
notation.

nanoground-connect-adapter@ax-ksat.hmac_crc_verify.enable_crc Expect and verify a CRC trailer in
downlink.

nanoground-connect-adapter@ax-ksat.hmac_crc_verify.enable_hmac Enable HMAC authentication in
downlink.

nanoground-connect-adapter@ax-ksat.hmac_crc_verify.hmac_key HMAC key to use in downlink. This
is a 128-bit key provided in hexadeci-
mal notation.

Table 6.3: NanoGround KSAT connector essential configuration parameters.

Parameter Name Description

nac-ksat-connector.ksat_cmd.cmd_sender_connected Whether the connector is connected
to the specified command sender in-
terface, or not.

nac-ksat-connector.ksat_cmd.cmd_ack_connected Whether the connector is connected
to the specified command acknowl-
edge interface, or not.

nac-ksat-connector.ksat_tlm.connected Whether the connector is connected
to the specified telemetry interface,
or not.

nac-ksat-connector.framer.output_frames_produced Number of uplink frames sent.
nac-ksat-connector.framer.input_frames_processed Number of downlink frames re-

ceived.

Table 6.4: NanoGround KSAT connector essential status parameters.

27

NanoGround User Manual
Revision 1.4

6.3 Leaf Space Leaf Line TTC for S-band
NanoGround AX Connect includes a Leaf Space TTC connector to support the setup depicted on Figure 6.3.
This setup includes bidirectional S-band communications with a NanoCom AX2150 radio.

Satellite

NanoGround

Mission Control Services

NanoCom AX2150

Leaf Space TTC
Connector

Leaf Space TTC

S-band RF Link

MQTT

Figure 6.3: Overview of supported Leaf Space TTC setup.

To enable the Leaf Space TTC connector, select y (default) when prompted whether to enable leaf_ttc
during deployment configuration. When enabling the connector, the following information is requested
during deployment configuration:

• The MQTT server URL and port to connect to.
• Whether to use TLS or not.
• The NORAD ID of the satellite to connect to.
• The username to use for MQTT connection.
• The password to use for MQTT connection.

The username and password must be provided at deployment time, the other configuration parameters
can be reconfigured using the REST API at run-time. The essential configuration and status parameters are
summarized on Tables 6.5 and 6.6.

Parameter Name Description

nanoground_leaf_ttc_connector@ax-leaf-ttc.main.mqtt_url The URL to connect to.
nanoground_leaf_ttc_connector@ax-leaf-ttc.main.mqtt_port The port to connect to.
nanoground_leaf_ttc_connector@ax-leaf-ttc.main.norad_id The NORAD ID of the satellite (used as root for the

MQTT topics).

Table 6.5: NanoGround AX Connect Leaf Space TTC connector essential configuration parameters.

Parameter Name Description

nanoground_leaf_ttc_connector@ax-leaf-ttc.main.mqtt_connected Whether the connector is connected to the Leaf
Space MQTT server.

nanoground_leaf_ttc_connector@ax-leaf-ttc.main.mqtt_rx_messages Number of packets received from MQTT server.
nanoground_leaf_ttc_connector@ax-leaf-ttc.main.mqtt_tx_messages Number of packets sent to the MQTT server.

Table 6.6: NanoGround AX Connect Leaf Space TTC connector essential status parameters.

28

NanoGround User Manual
Revision 1.4

6.4 RS-422 via Cable
The GOSH CLI service, described in Section 9, includes support for connecting to a NanoCom AX2150
radio via RS-422 using a universal serial bus (USB) to RS-422 converter cable. To enable RS-422 connec-
tion, enter a device path when prompted for Device path for KISS UART device during deployment
configuration. The device path must point to character device representing the RS-422 connection, e.g.,
/dev/ttyUSB0. This enables a second CSP interface in the GOSH CLI service named KISS. To verify the
presence of the KISS interface, access the GOSH CLI using docker attach as described in Section 9 and
run the following command:� �

ifc� �
The output of this command should look similar to the following:� �

RF tx: 00000 rx: 00000 txe: 00000 rxe: 00000
drop: 00000 autherr: 00000 frame: 00000
txb: 0 (0.0B) rxb: 0 (0.0B) MTU: 508

LOOP tx: 00000 rx: 00000 txe: 00000 rxe: 00000
drop: 00000 autherr: 00000 frame: 00000
txb: 0 (0.0B) rxb: 0 (0.0B) MTU: 0

ZMQHUB tx: 00000 rx: 00000 txe: 00000 rxe: 00000
drop: 00000 autherr: 00000 frame: 00000
txb: 0 (0.0B) rxb: 0 (0.0B) MTU: 1024

KISS tx: 00000 rx: 00000 txe: 00000 rxe: 00000
drop: 00000 autherr: 00000 frame: 00000
txb: 0 (0.0B) rxb: 0 (0.0B) MTU: 508� �

This indicates that the KISS interface is present and ready for use. To route CSP traffic over the KISS
interface, reconfigure the routing using the REST API as described in Section 8.

29

NanoGround User Manual
Revision 1.4

7 Accessing IPv4 Network
The IPv4 network interface is a fundamental component in NanoGround and must be configured for
NanoGround to function. While the interface is primarily used for communication with a NanoCom Link
SX radio, it is also used indirectly for communication with a NanoCom AX2150 radio. The interface is
available as a standard Linux network interface named rf0. When NanoGround is running the interface is
available from the host operating system (OS). To verify this, open a Linux terminal and run the following
command:� �

ip address show rf0� �
The output should be similar to the following:� �

3162: rf0: <POINTOPOINT,MULTICAST,NOARP,UP,LOWER_UP> mtu 9000 qdisc fq_codel state UNKNOWN
group default qlen 500
link/none
inet6 fe80::fa62:b43a:acf5:e6f1/64 scope link stable-privacy

valid_lft forever preferred_lft forever� �
7.1 Configuring the Network Interface
The network interface must be configured with an IPv4 address and a routing entry matching the satellite
network. By default, the NanoCom Link SX radio is configured with 10.128.0.4 as IPv4 address and a
routing entry specifying everything in the 10.129.0.0/16 subnet should be routed towards ground. On
Ubuntu, the following commands can be used to configure the NanoGround IPv4 address and routing to
match the default NanoCom Link SX configuration.

Listing 7.1: Interface configuration for the rf0 interface.� �
sudo /bin/bash -c 'echo "
network:

version: 2
renderer: networkd
ethernets:

rf0:
optional: true
link-local:

- ipv4
addresses:

- 10.129.0.1/32
routes:

- to: 10.128.0.0/16
scope: link

" > /etc/netplan/60-rf0.yaml'

sudo netplan apply� �
This configures the ground network interface to use 10.129.0.1 as IPv4 address and to route everything
in the 10.128.0.0/16 subnet towards the NanoCom Link SX radio. To verify the configuration, run the
following commands:� �

ip address show rf0
ip route list | grep rf0� �

30

NanoGround User Manual
Revision 1.4

These are expected to yield the following, or similar, output:� �
3162: rf0: <POINTOPOINT,MULTICAST,NOARP,UP,LOWER_UP> mtu 9000 qdisc fq_codel state UNKNOWN
group default qlen 500
link/none
inet 10.129.0.1/32 scope global rf0

valid_lft forever preferred_lft forever� �� �
10.128.0.0/16 dev rf0 proto static scope link� �

7.2 Accessing NanoCom Link SX Remotely
The IPv4 network interface can be used to access the NanoCom Link SX radio remotely if a bidirectional
radio link is available. For example, Secure Shell (SSH) can be used to connect to the NanoCom Link SX
radio by running the following command in a Linux terminal:� �

ssh <user>@<radio ip address>� �
An example is shown below using the default username and IPv4 address of the satellite radio.� �

user@server:~$ ssh root@10.128.0.4
Last login: Wed Mar 1 05:09:36 2023 from 10.129.0.1

____ ___ __ __
/ ___|/ _ \| \/ |___ _ __ __ _ ___ ___

| | _| | | | |\/| / __| '_ \ / _` |/ __/ _ \
| |_| | |_| | | | __ \ |_) | (_| | (_| __/
____|___/|_| |_|___/ .__/ __,_|______|

|_|

GomSpace NanoCom SGL Image

root@nanomind-z7030-nv3:~#� �
The SSH session provides access to the remote Linux system running on the satellite radio. The session
can be used to inspect files on the filesystem, running services, etc.� �

root@nanomind-z7030-nv3:~# systemctl is-system-running
running
root@nanomind-z7030-nv3:~# ls /data/log/
nanocom-tr600-monitor.log sgl-gateway.log
nanomind-hp-gateway.log sgl-gs-data.log
nanomind-hw-monitor.log sgl-gs-io.log
nanomind-sem-control.log transceiver_control.log
sgl-ccsds-control.log� �

31

NanoGround User Manual
Revision 1.4

7.3 Transferring Files to/from NanoCom Link SX
The NanoCom Link SX radio runs an rsync daemon which has four local folders used for upload and down-
load:

• /data/upload/ for uploading files to the primary embedded multi-media controller (eMMC) stor-
age.

• /data/download/ for downloading files from the primary eMMC storage.
• /data-striped/upload/ for uploading files to the striped eMMC storage.
• /data-striped/download/ for downloading log files from the striped eMMC storage.

To transfer files to/from these folders on the satellite radio, run rsync on the host server. An example is
shown below using the default IPv4 address of the satellite radio.� �

rsync -vrEtPh4z --append-verify ~/server_dir_to_upload/ 10.128.0.4::upload-striped
rsync -vrEtPh4 --append-verify 10.128.0.4::download-striped ~/server_dir_to_download_into/� �

Note the use of compression (-z) in upload. Compression can be used on download as well, although for
high-bandwidth links, this may slow down the transfer. For details regarding the rsync options refer to the
rsync manual [6].

7.4 Routing IPv4 via a NanoCom Link SX
The NanoCom Link SX radio is configured to route IPv4 packets to the satellite network. For example, if
a payload is connected to the NanoCom Link SX over SpaceWire and configured with an IPv4 address of
10.128.0.32 it can be reached directly from the NanoGround server using that address. The NanoGround
network interface automatically routes the packets to the radio, and the radio automatically routes the
packets to/from the payload. The details on the onboard network is described in the NanoCom Link SX
user manual.

7.5 Accessing NanoCom AX2150
The IP network does not extend to the NanoCom AX2150 radio. The IP network is still used by NanoGround
to route CSP packets internally, however. Consequently, the IP network interface must be configured for
the CSP network to function.

32

NanoGround User Manual
Revision 1.4

8 Accessing CSP Network

The CSP network is accessible through a ZMQ proxy service hosted by NanoGround. Note that NanoGround
uses CSP version 1.6 and is not compatible with later versions. The ZMQ proxy service is available on TCP
port 6000 and 7000 on the host machine running NanoGround. Before using the CSP network, ensure the
IP network interface is configured as described in Section 7.

8.1 Configuring the Network Address and Routing
NanoGround comes with a pre-configured CSP network that is set up to work with standard GomSpace
satellites and products. In a standard GomSpace mission, the CSP nodes in the satellite are assigned
addresses in the range 1-23 while ground nodes are assigned 24-30. The GOSH CLI service acts as gateway
between the satellite and ground parts of the CSP network as indicated on Figure 3.1. This service runs a
CSP router configured to route packets according to the GomSpace standard address scheme. The default
CSP address of the GOSH CLI service itself is 28.

To reconfigure the CSP address or routing of the GOSH CLI service, use the REST API to change following
parameters using the approach described in Section 4.

• nanoground_gosh_cli.csp_server.address
• nanoground_gosh_cli.csp_server.rtable

Note that changes to both parameters causes the GOSH CLI service to restart. It is important that any
custom ground CSP nodes that connect to the ZMQ proxy is configured to route packets over ZMQ via the
GOSH CLI service. This ensures the GOSH CLI service receives and forwards the packets to the correct
destination.

8.2 Sending and Receiving CSP Packets
The approach described in this section is only relevant if custom applications require direct, low-level access
to the CSP network. For high-level access to GomSpace control commands see Section 9. Listing 8.1 shows
an example of how to connect a C application to the NanoGround CSP network via the ZMQ proxy.

Listing 8.1: Example of connecting C application to NanoGround CSP network via ZMQHUB.� �
1 // Connect to ZMQHUB running on localhost - use CSP address 29 for this node
2 csp_iface_t *zmq_if = NULL;
3 int err = csp_zmqhub_init(29, "127.0.0.1", 0, &zmq_if);
4 if (err != CSP_ERR_NONE) {
5 fprintf(stderr, "csp_zmqhub_init failed (%d)\n", err);
6 return 1;
7 }
8

9 // Set routing so any address below 24 is routed via node 28 (GOSH CLI service)
10 csp_rtable_load("0/0 ZMQHUB 28, 24/2 ZMQHUB");� �

The example on Listing 8.1 uses address 29 for the custom application and configures it to route all packets
with a destination address below 24 to the GOSH CLI service. As a result, the packets are forwarded over all
active radio frequency (RF) links towards the satellite. For details regarding usage of CSP in C applications,
refer to the libcsp documentation. For high-level access to the CSP network, use the GOSH CLI service
described in Section 9.

33

NanoGround User Manual
Revision 1.4

8.3 Using Multiple Radio Uplinks
The ground CSP network connects to the satellite using either a NanoCom Link SX radio or a NanoCom
AX2150 radio. NanoGround automatically uses any active radio uplink to route CSP packets to the satellite.
As a result, no configuration is necessary to select uplink besides activating the relevant connectors.

34

NanoGround User Manual
Revision 1.4

9 Using GOSH CLI

The GOSH CLI service offers a human interface to the GomSpace control protocol. It provides the operator
with comprehensive set of text commands that construct the underlying control packets and transmit
them over the CSP network to the satellite subsystems. This includes low-level commands such as ping
and routing, as well as high-level commands such as setting parameters and retrieving telemetry data. It
also parses the response from the satellite subsystems and presents it in human readable format. The CSP
network must be configured as described in Section 8 for the GOSH CLI service to function correctly.

9.1 Accessing GOSH CLI
The GOSH CLI is accessible via the Docker container hosting the service. To access it, run the following
command in a terminal on the host machine:� �

docker attach nanoground-core-gosh-cli-1 --detach-keys ctrl-c� �
Hit the Enter key to get a prompt in the GOSH CLI. The output is expected to look similar to the follow-
ing:� �

user@server:~$ docker attach nanoground-core-gosh-cli-1 --detach-keys ctrl-c
GOSH #
GOSH #� �

This indicates the GOSH prompt is ready for commands. To exit the GOSH CLI, hit the Ctrl-C key combina-
tion.

9.2 Available Commands
To list available commands type help at the GOSH prompt. Commonly used commands include

• ping – Send a ping to a specific node in the CSP network to verify connectivity and latency.
• cmp ident – Get the identity of a specific node in the CSP network.
• cmp clock – Get or set the clock of a specific node in the CSP network.
• rparam – Get or set a parameter of a specific node in the CSP network.
• ftp – Download or upload files to/from a specific node in the CSP network.

To get more information about a command type help <command> at the GOSH prompt. Alternatively, type
the command and hit the tab key to get a brief description of the command and its arguments. NanoGround
includes control commands and protocols for all GomSpace products. For detailed information about a
command, refer to the documentation of the relevant products.

35

NanoGround User Manual
Revision 1.4

9.3 Programmatic Access to GOSH CLI
The GOSH CLI can also be accessed programmatically via the REST API. Use the following endpoint to send
commands to the GOSH CLI service:

POST /api/v1/gosh/raw?command=<command>&timeout_seconds=<timeout in second>

This endpoint executes the provided command or times out after the specified number of seconds. If the
command is successful it returns a JSON object with the following structure:� �

{
"exec_result": 0,
"cmd_result": 0,
"detail": "Ping node 28, timeout 1000, size 1: options: 0x0 ... reply in 1.368 ms\r\n"

}� �
The exec_result field indicates the result of the command execution. This return code is non-zero if e.g.
the command is unknown. The cmd_result field indicates the result of the command being executed. The
detail field contains the output of the command. For details see the OpenAPI documentation available
at /api/v1/openapi.json or the Swagger UI.

36

NanoGround User Manual
Revision 1.4

10 Receiving and Accessing Beacon Data

This section is only applicable if the NanoGround Beacon Parser extension is installed.

10.1 Beacon System Overview
The NanoGround beacon parser, complements the GomSpace satellite housekeeping system. An overview
of the entire system is illustrated in Figure 10.1.

Satellite

NanoGround

CSP Network Connector Ground Station

NanoCom Link SX or AX2150

Radio

RF Link

Beacon ParserBeacon

Database

CSP
Network

NanoMind OBC

Housekeeping

File

system

Figure 10.1: Overview of beacon and housekeeping system.

The housekeeping system is configured using a JSON specification file that defines the different status
parameters to include in the different beacons. Beacon data is subsequently gathered and transferred in
one of the following ways:

• Regular transmission of beacon data at a fixed interval containing a small subset of all status param-
eters – this is typically only used during the launch and early orbit phase (LEOP).

• Burst transmission of beacon data on demand for a selected time range.
• Storage of beacon data in files, which is later downloaded by the ground station operator.

The two former methods rely directly on the CSP network to transfer the beacon data. The latter method,
relies on file transfer protocols to transfer the beacon data. All three methods are supported by the
NanoGround beacon parser, which receives, parses and stores the beacon data.

37

NanoGround User Manual
Revision 1.4

10.2 Providing Beacon Specifications
To enable parsing of beacon data, the beacon parser must be provided with a JSON specification file match-
ing the one provided to the satellite housekeeping system. An example of a satellite beacon specification
file is provided in Listing 10.1. Please note that the two spec formats are very similar yet distinct. It is
important to not upload the ground specification file to the satellite and vice versa.

Listing 10.1: Example of satellite beacon specification file.� �
1 {
2 "type": 10,
3 "version": 1,
4 "max_samples": 960,
5 "samplerate": "medium",
6 "auto_beacon_policy": "off",
7 "elements": [
8 {
9 "node_address": 1,

10 "table_id": 4,
11 "params": [
12 {
13 "name": "fs_mounted"
14 },
15 {
16 "name": "ram_image"
17 },
18 {
19 "name": "temp_mcu"
20 }
21]
22 }
23]
24 }� �

To parse beacon data generated by the satellite using this beacon specification, a matching ground specifi-
cation must be provided similar to the one in Listing 10.2.

Listing 10.2: Example of ground beacon specification file.� �
1 {
2 "_id": "10.1",
3 "name": "OBC_telemetry_4",
4 "description": "OBC_telemetry_4 size=32",
5 "type": 10,
6 "version": 1,
7 "max_samples": 960,
8 "samplerate": "medium",
9 "auto_beacon_policy": "off",

10 "elements": [
11 {
12 "node_name": "OBC",
13 "table_name": "telemetry",
14 "node_address": 1,
15 "table_id": 4,
16 "params": [
17 {
18 "name": "fs_mounted",
19 "type": "bool"

38

NanoGround User Manual
Revision 1.4

20 },
21 {
22 "name": "ram_image",
23 "type": "bool"
24 },
25 {
26 "name": "temp_mcu",
27 "type": "int16"
28 }
29]
30 }
31]
32 }� �

The ground specification contains the same information and some additional meta-data such as names
and type descriptions. The specification file for the beacon parser must be placed in a specific directory
under the NanoGround main directory. For NanoGround version 25.01, the main directory is named
nanoground-25.01 and inside this directory the path for beacon specifications is

nanoground-beacon-parser-1.1.0/bind-mounts/beacon-parser/beacon-specs

relative to the directory in which NanoGround was installed on the host machine. Reboot the NanoGround
service after placing the specification file in the directory to ensure it is loaded:� �

docker restart nanoground-beacon-parser-1� �
The beacon parser service is now ready to parse beacon data for the provided specification.

10.3 Receiving Beacon Data Over CSP
To receive beacon data over CSP, the CSP network must be configured as described in Section 8. In addition,
the satellite housekeeping system must be configured to transmit beacon data with the NanoGround
beacon parser as destination. For details on how to configure the satellite housekeeping system, refer to
the GomSpace documentation for the specific satellite OBC. By default, the NanoGround beacon parser
has CSP address 30, but this can be configured as part of the deployment configuration.

The beacon parser is connected to the CSP network through the ZMQHUB service described in Section 8. It
listens for incoming beacon data and parses it according to the provided specification(s). To test beacon
reception over CSP, load the specification in Listing 10.2 into the NanoGround beacon parser and execute
the following command in the GOSH CLI. Usage of the GOSH CLI is described in detail in Section 9.� �

raw 30 30 1000 010a010000006368a387d600010100001e� �
This command sends a raw CSP message to the beacon parser service. Note the command fails because
the beacon parser does not reply but successful parsing can be verified by checking the logs of the beacon
parser service:� �

docker logs nanoground-beacon-parser-1� �
The logs are expected to show an entry similar to the following:

39

NanoGround User Manual
Revision 1.4

� �
libhk_client.hk.beacon_parser Beacon parsed, type=10, version=1, satid=0, ts:1755547606� �

This indicates the beacon data was received, parsed and stored successfully.

10.4 Receiving Beacon Data From Files
To ingest beacon data from files they must be placed in a specific directory under the NanoGround main
directory. For NanoGround version 25.01, the directory is

nanoground-beacon-parser-1.1.0/bind-mounts/beacon-parser/beacon-data

Files that are placed in this directory are automatically ingested and subsequently deleted by the beacon
parser service. To test beacon ingestion from files, navigate the beacon-data directory in a terminal on
the host machine and run the following command:� �

echo -ne "6263000100110a010a010000006368a38c0800010100001e" | xxd -r -p > data.bin� �
Within 5 seconds, the beacon parser service should have parsed the file and stored the beacon data. To verify
the beacon data was parsed and stored successfully, check the logs of the beacon parser service:� �

docker logs nanoground-beacon-parser-1� �
The logs are expected to show an entry similar to the following:� �

libhk_client.hk.beacon_parser Beacon parsed, type=10, version=1, satid=0, ts:1755548680� �
In addition, the file generated in the beacon-data directory is deleted. This indicates the beacon data was
successfully parsed and stored.

10.5 Accessing Parsed Received Data
The parsed beacon data is stored in a TimescaleDB database hosted by NanoGround [7]. The database
is accessible from the host OS on TCP port 5432 using standard TimescaleDB or PostgreSQL clients. The
database is named gs-beacons and contains a TimescaleDB hypertable named paramdata. The table
contains a row for each time sample of each status parameter parsed from beacon data. The table has the
following columns:

• ts (TIMESTAMPTZ) – Observation timestamp (UTC) including offset corrections, used for time parti-
tioning and time-based queries.

• ts_org (TIMESTAMPTZ) – Original timestamp as provided by the satellite (UTC), if available.
• ts_received (TIMESTAMPTZ) – Timestamp when the parser stored the row (UTC).
• satellite (INT) – Satellite identifier.
• table_id (INT) – Identifier for the originating parameter table.
• node (INT) – Identifier for the originating CSP node in the satellite.
• name (TEXT) – Parameter name (as defined in the beacon specification).
• value_int (INT8) – Integer parameter value (if applicable).
• value_float (FLOAT8) – Floating-point parameter value (if applicable).

40

NanoGround User Manual
Revision 1.4

• value_str (TEXT) – String parameter value (if applicable).
• array_index (INT) – Index for array parameters (if applicable).
• beacon_id (BIGINT) – Identifier for the beacon message (if used).

The table is partitioned by the ts column to enable efficient querying of time ranges. To query the database,
use any standard TimescaleDB or PostgreSQL client. In Listing 10.3, an example script is provided that
retrieves all parsed beacon data and prints it to the console.

Listing 10.3: Example of script to retrieve all parsed beacon data.� �
1 #!/usr/bin/env python3
2 import psycopg2
3

4 DBNAME = "gs-beacons"
5 DBUSER = "gomspace"
6 DBPW = "gomspace"
7 DBHOST = "localhost"
8

9

10 def main():
11 with psycopg2.connect(host=DBHOST, user=DBUSER, password=DBPW, dbname=DBNAME) as conn:
12 with conn.cursor() as cur:
13 # Get all rows in paramdata table
14 cur.execute("SELECT * FROM paramdata")
15 rows = cur.fetchall()
16

17 # Print all rows
18 for row in rows:
19 print(row)
20

21

22 if __name__ == "__main__":
23 main()� �

Executing the script produces an output similar to the following assuming the example beacon specification
and data described in the previous sections are used:� �

(1, datetime.datetime(2025, 8, 18, 20, 24, 40, tzinfo=datetime.timezone.utc), datetime.
datetime(2025, 8, 18, 20, 24, 40, tzinfo=datetime.timezone.utc), datetime.datetime(2025, 8,
19, 10, 30, 17, 276808, tzinfo=datetime.timezone.utc), 0, 4, 1, 'fs_mounted', 1, None, None,
None, None)
(2, datetime.datetime(2025, 8, 18, 20, 24, 40, tzinfo=datetime.timezone.utc), datetime.
datetime(2025, 8, 18, 20, 24, 40, tzinfo=datetime.timezone.utc), datetime.datetime(2025, 8,
19, 10, 30, 17, 311688, tzinfo=datetime.timezone.utc), 0, 4, 1, 'ram_image', 0, None, None,
None, None)
(3, datetime.datetime(2025, 8, 18, 20, 24, 40, tzinfo=datetime.timezone.utc), datetime.
datetime(2025, 8, 18, 20, 24, 40, tzinfo=datetime.timezone.utc), datetime.datetime(2025, 8,
19, 10, 30, 17, 313771, tzinfo=datetime.timezone.utc), 0, 4, 1, 'temp_mcu', 30, None, None,
None, None)� �

For more information on how to query the database, refer to the TimescaleDB documentation [7].

41

NanoGround User Manual
Revision 1.4

11 Receiving and Accessing GSUFTP Data

This section is only applicable if the NanoGround Link Connect extension is installed.

11.1 GSUFTP Overview
GSUFTP is a custom file transfer protocol used by GomSpace to transmit files from a NanoCom Link X or Link
SX radio towards ground. GSUFTP does not require any simultaneous uplink capability while downlinking
files. This makes it ideal for use with unidirectional X-band downlinks as illustrated on Figure 11.1.

Satellite

NanoGround

IPv4 Network
Interface

Connector Ground Station

NanoCom Link X

File

Storage

GSUFTP
TX

X-band

RF Link

GSUFTP RX
Service

File

Storage

Figure 11.1: Overview of GSUFTP use-case.

The protocol splits files into chunks and transmits them in UDP packets. The NanoGround GSUFTP service
receives the UDP packets and reconstructs the files on the local filesystem. For the GSUFTP service to
function, the IPv4 network interface must be configured as described in Section 7.

11.2 Persistence of Received Files
The GSUFTP service is designed to run continuously and automatically receive files as they are
transmitted by the satellite. While the service is running, it regularly stores all internal state and
partial files to persistent storage. This ensures that even if the service is restarted or the system
is rebooted, it can resume receiving files without losing any data. If incomplete files sit idle in
the receive buffer for more than 7 days, they are automatically deleted to prevent storage over-
flow. This timeout is configurable through the REST API by changing the control parameter named
nlc_gsuftp_rx.chunk_writer.idle_file_expiration_time.

11.3 Accessing Received Files
The received files are put into the NanoGround Link Connect main directory when they are complete.
On the host machine, this directory is accessible from the main directory NanoGround was installed into
under nanoground-link-connect-1.3.0/bind-mounts/gsuftp-rx-output. Due to the nature of the
GSUFTP protocol, the operator must manually (or through other means not provided by NanoGround)
delete the files on the satellite once they are successfully received on the ground.

42

NanoGround User Manual
Revision 1.4

11.4 Monitoring
The GSUFTP service can be monitored using the NanoGround REST API. The essential parameters for
monitoring the GSUFTP service are listed on Table 11.1.

Parameter Name Description

nlc_gsuftp_rx.chunk_rx.chunks_received Number of file chunks received.
nlc_gsuftp_rx.chunk_rx.chunks_dropped_overflow Number of file chunks dropped due to in-

ternal overflow. This can indicate server
load issues.

nlc_gsuftp_rx.chunk_writer.chunks_dropped_duplicate Number of files chunks dropped be-
cause it has already been received. This
is expected increase during normal op-
eration.

nlc_gsuftp_rx.chunk_writer.chunks_written Number of files chunks written to recon-
struct files.

nlc_gsuftp_rx.chunk_writer.files_completed Number of files completely recon-
structed.

nlc_gsuftp_rx.chunk_writer.files_expired Number of files that expired before be-
ing reconstructed.

nlc_gsuftp_rx.chunk_writer.files_started Number of files where at least one chunk
has been received.

Table 11.1: NanoGround GSUFTP service essential status parameters.

43

NanoGround User Manual
Revision 1.4

12 Security

NanoGround supports secure communications with the satellite by use of symmetric Advanced Encryption
Standard 256-bit key length (AES256)-Galois/Counter Mode (GCM) encryption. This chapter provides an
overview of the security features and how to manage the cryptographic keys used for encryption and
decryption.

Communications are encrypted using primarily session keys that are derived from master keys, but master
keys can also be used directly for encryption and decryption if manually selected. Master keys must be
securely generated and shared between the ground and the satellite before any secure communication
can take place.

Session keys are derived from the master keys using a key derivation function and are used for a limited
time or amount of data before they are replaced by new session keys. This approach ensures that, even if a
session key is exposed, only a small portion of data is affected, minimizing the potential impact.

12.1 Installation Secrets
To ensure protected inter-process communications within NanoGround, any volatile information is en-
crypted. The internal communication is secured by the use of a docker secret, generated automatically
during the installation process as a text file called ‘keystore-password.txt‘. This file is protected through
file-permissions such that only an administrator of the system can interact with it.

12.2 Key Management
A critical aspect to the security of the AES256-GCM encryption is the management of the encryption keys.
A detailed description of background for key management is provided in NanoCom Link and AX2150 Infor-
mation Security [8]. This section provides a description from a practical perspective on how to manage
the keys for the radio.

12.2.1 Master Keys

The security feature uses master keys as the basis for all cryptographic operations. The master keys are
256-bit keys that are used to derive the session keys used for encryption and decryption.

Master keys are loaded into the radio before launch, as a pre-shared secret between the radio and the
ground counterpart. After launch, no new master keys can be loaded into the radio.

As a fallback mechanism, master keys can be used for encryption and decryption, if no session keys are
available. However, the nominal operation is that master keys are only used to derive session keys.

Each master key is identified by a key index, which is an integer value between 1 and 65534.

44

NanoGround User Manual
Revision 1.4

12.2.2 Session Keys

Session keys are derived from a master key. The session keys are used for encryption and decryption of
the data packets.

Unlike master keys, session keys are derived continuously during operation.

Each session key is identified by a key index, which is an integer value between 1 and 65534. The session
key index is used as an input to the key derivation function that derives the session key from the master
key.

12.2.3 Invocation Counter

Each key, both master and session keys, has an associated invocation counter. The invocation counter
is a 64-bit unsigned integer that is incremented each time the key is used for encryption. The invocation
counter is used to ensure that the same key is not used more than once with the same initialization vector
(IV), which would compromise the security of the encryption. The stored invocation counter for encryption
is incremented after each use of the key, while the decrypt side pulls the invocation counter from the
received packet if the packet is successfully authenticated. When a key is selected for encryption, the
invocation counter is incremented with a safety margin to ensure that crashes or reboots do not cause the
same IV to be used again.

Note that the invocation counter is not increased, when a master key is used to derive a session key.

The invocation counter is transmitted in clear-text as part of the IV in each encrypted packet.

12.2.4 Protection Against Replay Attacks

The invocation counter is implemented, as part of an anti replay mechanism. When a packet is received,
the invocation counter included in the packet is compared to the last invocation counter seen for that key.
The packet is only accepted if the counter is strictly greater than last recorded for that key. If the invocation
counter is less than or equal to the last seen value, the packet is dropped, a warning is logged and relevant
telemetry is updated.

12.2.5 Key States

Each key is attributed a state, which defines how the key can be used. The key states are defined based
on Consultative Committee for Space Data Systems (CCSDS) Magenta Book 354.0-M-1 Symmetric Key
Management [9].

The key states are:

• Pre-operational: The key is available, but has not yet been used. This is the initial state of a key after
it has been loaded or derived.

• Active: The key is in active use, either for encryption/decryption or for deriving session keys.
• Deactivated: The key has been de-activated. It is no longer available for derivation or encryption/de-

cryption.
• Suspended: The key is suspended, unavailable for encryption/decryption and derivation. The key

can be re-activated by the operator.
• Destroyed: A key can only transition into the destroyed state, as this action removes all information

about the key from the system.

45

NanoGround User Manual
Revision 1.4

NOTE: When a master key is destroyed, any session keys that reference it will have their parent_id
field nullified, ensuring that the association to the destroyed master key is also removed. Subsequently,
the operator must decide how to handle the resulting orphaned session keys.

The following conditions will automatically change the state of a key:

• A pre-operational key will transition to the active state, when it is used for encryption/decryption or
for deriving session keys.

• An active key will transition to the suspended state, when the invocation counter is close to the
maximum value.

• An active key will transition to the suspended state, when an issue with the key in the crypto engine
is detected, e.g. the key data has been corrupted.

All other state transitions are initiated by the operator.

Figure 12.1 shows the valid state transitions for a key. The valid state transitions are aligned with CCSDS
Magenta Book 354.0-M-1 Symmetric Key Management [9].

Pre-operationalLoad/Derive Active

Suspended

Deactivated Destroyed

Figure 12.1: Key state transitions.

12.2.6 Automatic Key Rollover

To ease the operational burden of key management, the ‘crypto‘ system support automatic key rollover.
Automatic key rollover means that the system will automatically take new keys into use for encryption,
when the current key is no longer available.

The selection of a new key is based on the following list of priorities. Each condition is followed in order,
until a single key is found.

1. A session key in the active state with the highest invocation counter.
2. A session key in the pre-operational state with the lowest key index.

When an eligible session key is found, the invocation counter is checked to ensure it does not exceed
the key invocation suspension threshold (including the safety margin). If the threshold is exceeded,
the key is suspended and the next eligible key is checked. The key invocation suspension thresh-
old is configurable by the operator through the ‘ic_threshold‘ parameter in NanoCom Link, and the
‘key_invocation_suspension_threshold‘ attribute in each adapter in NanoGround. Note that the invocation
count of the active encryption key is continuously monitored as well.

In case no eligible session key is found, the downlink (encryption) is blocked. The operator must provide an
eligible session key by deriving new keys, or re-activating a suspended key. As a fallback mechanism, the

46

NanoGround User Manual
Revision 1.4

operator can choose a specific master key index for encryption. Master keys are never selected automatically
for encryption.

12.3 Key Storage
The keys are stored and managed by the ‘crypto-service‘ container and are stored in a bind-mount directory,
appropriately named ‘crypto‘. Keys are organized by keystores that are used to separate them for different
directions, links or other reasons (s_up/s_down/x_down/ax_up/ax_down). Each key has associated meta-
data, including the key index, state and invocation counter. Keys are organized by keystores that are used
to separate keys for different directions (s_up/s_down/x_down/ax_up/ax_down).

Since one NanoGround installation is tied to one satellite, only one set of keystores may be used.

Keys are not shared between different installations of NanoGround nor should they. Each keystore contains
three copies of each key object to recover from corruption of the key data automatically.

Each keystore can store up to 512 keys at a time.

12.4 Preparing master keys
Master keys must be loaded into the ‘crypto‘ system before the security feature can be used. The first step
is the generate master keys. For this purpose, a key generation tool ‘gs_key_transit‘ is provided with the
delivery. The tool generates cryptographically secure random keys, and outputs the keys in a format that
can be loaded into the system.

To generate a master key, run the ‘gs_key_transit‘ tool. The tool will prompt for a passphrase to protect the
master key, until it is loaded into the system. The passphrase must be at least 20 characters long. The user
input will not be echoed to the terminal for security reasons. Next, the tool will prompt for a keystore that
the key is to be loaded into. Select the keystore based on the intended use of the key:

• s_up: S-band uplink (ground to satellite)
• s_down: S-band downlink (satellite to ground)
• x_down: X-band downlink (satellite to ground)
• ax_up: AX2150 uplink (ground to satellite)
• ax_down: AX2150 downlink (satellite to ground)

Finally, the tool will prompt for a key index for the master key. This index must be unique within the selected
keystore.

An example of generating a master key with index 1 for the S-band uplink keystore is shown below. Note
the command output in the example below is truncated, to avoid presenting a real key.� �

$ gs_key_transit
Enter a passphrase (at least 20 characters):
Repeat the passphrase:
Enter the keystore the master key should be stored in (s_up, s_down, x_down, ax_up, ax_down):
s_up

Enter the key ID (16-bit decimal unsigned integer, or leave blank to generate a random ID): 1
Assigned key ID: 1
GOSH command to execute to load the key:

crypto load_key 0001000157d6ba88a8f50ef391a753cbb3c14fcbf66f0ddc0c79ba3078c6357� �
47

NanoGround User Manual
Revision 1.4

The keys are loaded using the GOSH command line interface of the system.

Call crypto command to set the expected passphrase.� �
crypto passphrase� �

Write the passphrase used when generating the key. The input will not be echoed to the terminal for security
reasons. The passphrase remains active until the GOSH application is restarted.

Next, execute the command output by the ‘gs_key_transit’ tool to load the key into the system.� �
crypto load_key 0001000157d6ba88a8f50ef391a753cbb3c14fcbf66f0ddc0c79ba3078c6357� �

To verify that the key has been loaded correctly, use the following command to list the keys in the S-band
uplink keystore.� �

crypto list_keys s_up� �
Once all master keys in the keystore have been loaded, the loading of new master keys in the keystore can
be disabled, by freezing the keystore.� �

crypto freeze s_up� �
Freezing the keystore is a permanent action, and the only way to load new master keys into the keystore is
by wiping all the keys in the system:� �

crypto wipe_all_keys� �
12.5 Deriving session keys
Under nominal operation, session keys are used for encryption and decryption of data packets. Session
keys are derived from master keys, and the operator must initiate the derivation of new session keys.

Session keys can be derived using the ‘crypto derive_key’ command in GOSH, or via the ‘rcrypto de-
rive_key’ command in a GOSH application in the ground segment, which includes the ‘rcrypto’ client
commands.

In this example, a session key with index 10 is derived from the master key with index 1 in the S-band uplink
keystore, using GOSH.� �

crypto derive_key s_up 1 10� �
The requested keystore name, session key index, and master key index are used as input to the key deriva-
tion function that generates the session key. This allows you to derive the same session key on both the
radio and the ground counterpart, as long as the same master key is used.

To verify that the session key has been derived correctly, use the following command to list the keys in the
S-band uplink keystore.� �

crypto list_keys s_up� �
48

NanoGround User Manual
Revision 1.4

12.6 Operational Workflows
This section describes the typical workflows for operating the encryption features. This includes the actions
to be taken before launch, as well as during operations after launch.

12.6.1 Before Launch

The following actions should be done before launch through the GOSH CLI:

• Generate master key(s) using ‘gs-key-transit‘ as described in Section 12.4.
• Use ‘crypto passphrase‘ to set the keystore passphrase (should match what is used in ‘gs-key-transit‘).
• Use ‘crypto load_key‘ to load the master key(s) into the keystore.
• Use ‘crypto freeze‘ to permanently freeze a keystore from loading new master keys (deriving keys is

still allowed).
• Use ‘crypto derive_key‘ to derive initial session key(s) from the master key(s).

All operations should be performed on both the ground and the radio counterpart to ensure that both
sides have the same keys available.

• Use ‘crypto load_key‘ on the radio to load the same master key(s) into the radio’s keystore.
• Use ‘crypto freeze‘ on the radio to permanently freeze a keystore from loading new master keys

(deriving keys are still allowed).
• Use ‘crypto derive_key‘ on the radio, or ‘rcrypto derive_key‘ to derive the same initial session key(s)

from the master key(s).

Note that key derivation is deterministic, as long as the same arguments are used for the ‘load_key‘ and
‘derive_key‘ commands.

12.6.2 After Launch

If enabled, encryption is automatically used for all radio communications with the satellite. Key manage-
ment is handled by the operator as needed.

Below are a few scenarios expected to be common during operations.

Creating and Using New Session Keys
In the case where new session keys are to be used, the operator must derive new session keys from a
master key on both sides. This is done by first deriving a new key on both ground and on the radio using
‘crypto‘ and ‘rcrypto‘. Say the current state of keys on both sides is as shown in Listing 12.1.

Listing 12.1: Active session keys on both radio and ground.� �
1 Radio 's_up' Keystore
2 ID Type State Parent ID Invocation Count
3 ---
4 1 master active 0 0
5 2 session active 1 0
6 ---
7

8 Ground 's_up' Keystore
9 ID Type State Parent ID Invocation Count

49

NanoGround User Manual
Revision 1.4

10 ---
11 1 master active 0 0
12 2 session active 1 0
13 ---� �

In Listing 12.2, a new session key (3) is derived from the active master key (1) on both sides. Note that the
order of operations here is important to avoid losing connectivity. After these operations, session key 2
should be deactivated on both sides, and the new session key 3 is in the preoperational state. Preoperational
session keys are automatically used by the system if no other active session keys are available, so the
resulting state of the keystores should be as depicted in Listing 12.3.

Listing 12.2: Deriving and activating new session keys on both sides.� �
1 # Derive a new key on ground
2 GOSH # crypto derive_key s_up 1 3
3

4 # Derive a new key on the radio
5 GOSH # rcrypto derive_key 13 s_up 1 3
6

7 # Deactivate the old session key (2) on the radio
8 GOSH # rcrypto change_state 13 s_up 2 deactivated
9

10 # Deactivate the old session key (2) on ground
11 GOSH # crypto change_state s_up 2 deactivated� �

Listing 12.3: New session keys.� �
1 Radio 's_up' Keystore
2 ID Type State Parent ID Invocation Count
3 ---
4 1 master active 0 0
5 2 session deactivated 1 0
6 3 session active 1 0
7 ---
8

9 Ground 's_up' Keystore
10 ID Type State Parent ID Invocation Count
11 ---
12 1 master active 0 0
13 2 session deactivated 1 0
14 3 session active 1 0
15 ---� �

Note that you are not limited to registering a single session key, multiple session keys can be derived and
activated as needed. You can even have multiple preoperational session keys available, and the system
will automatically select which one to use as described in Section 12.2.

50

NanoGround User Manual
Revision 1.4

No Session Keys Left
Only active and pre-operational session keys are used for encryption in ‘auto‘ mode. Active and pre-
operational master keys are available for decryption. In a scenario where there are no session keys available,
any communications with a radio is done in the blind with no feedback on whether the packets are received
or not. This is a very undesirable state to be in, and the operator should immediately derive new session
keys from a master key on both sides as described in Listing 12.2. Note that since no session keys are
active, the ‘rcrypto‘ command on the radio side is not acknowledged, and the operator must assume it
was successful.

Handling Compromised Keys
If a key is suspected or confirmed to be compromised, the operator has several options for mitigating the
risk:

• Suspend the key: The key is made unavailable, but can be re-activated by the operator if needed.
• Deactivate the key: The key is made irreversibly unavailable, but will still exist in the filesystem until

it is destroyed.
• Deactivating and destroying the key: The key and all associated information are permanently

deleted from the system.

It is recommended to either deactivate or destroy compromised keys whenever possible to prevent any
future use. Leaving compromised keys in a suspended state increases the risk of accidental use.

Note that destroying a master key will also remove the association to any session keys derived from it, as
shown in Listing 12.4.

Listing 12.4: Destroying a master key with children.� �
1 LINK # crypto list_keys s_up
2 Found 5 keys in 's_up'
3

4 ID Type State Parent ID Invocation Count
5 ---
6 1 session preoperational 1234 0
7 2 session preoperational 1234 0
8 3 session preoperational 1234 0
9 4 session preoperational 1234 0

10 1234 master active 0 0
11 ---
12 LINK # crypto change_state s_up 1234 deactivated
13 LINK # crypto change_state s_up 1234 destroyed
14 LINK # crypto list_keys s_up
15 Found 4 keys in 's_up'
16

17 ID Type State Parent ID Invocation Count
18 ---
19 1 session preoperational 0 0
20 2 session preoperational 0 0
21 3 session preoperational 0 0
22 4 session preoperational 0 0
23 ---� �

51

NanoGround User Manual
Revision 1.4

12.7 Enabling the Security Feature
Up- and downlink for each of the adapters can be configured to use the security feature independently. The
security feature is in the disabled state on all adapters by default. It is enabled through the NanoGround
configuration parameters, which can be set through the REST API or the NanoGround web interface. For
the custom connector, enabling encryption and decryption is done through the following parameters:
nanoground-connect-adapter@link-custom.aes_encrypt.enable_encryption
nanoground-connect-adapter@link-custom.aes_decrypt.enable_decryption

" WARNING: The security feature should only be enabled for one adapter at a time, so make sure to
disable before enabling on another adapter. Failure to do so will cause issues with the encryption and
decryption of packets.

The security configuration parameters are described in Table 12.1.

Parameter Name Description

aes_encrypt.enable_encryption Enable AES256-GCM encryption. By-
passes if disabled.

aes_encrypt.requested_encrypt_key_id ID of the requested encryption key.
’0’ will use automatic key rollover.

aes_decrypt.enable_decryption Enable AES256-GCM decryption. By-
passes if disabled.

Table 12.1: NanoGround adapter security configuration parameters.

12.8 Security Telemetry
The security feature provides telemetry parameters to monitor the status of the encryption and decryption.
These parameters can be accessed through the REST API or the NanoGround web interface. For the custom
connector, fetching the active encrypt key id is done through the following parameter:
nanoground-connect-adapter@link-custom.aes_encrypt.encrypt_key_id
All of the security status parameters are described in Table 12.2.

52

NanoGround User Manual
Revision 1.4

Parameter Name Description

aes_encrypt.enable_encryption Enable AES256-GCM encryption. By-
passes if disabled.

aes_encrypt.encrypt_key_id ID of the active encryption key. ’0’
means no active key.

aes_encrypt.input_bytes Number of bytes received on data
socket.

aes_encrypt.input_packets Number of packets received on data
socket.

aes_encrypt.output_bytes Number of bytes transmitted on data
socket.

aes_encrypt.output_packets Number of packets transmitted on
data socket.

aes_encrypt.packets_bypassed Number of packets bypassed due to
disabled encryption.

aes_encrypt.packets_dropped_failed Number of packets dropped due to
failed encryption.

aes_encrypt.packets_dropped_overflow Number of packets dropped due to
output queue overflow.

aes_encrypt.packets_dropped_oversized Number of packets dropped due to
oversized input.

aes_decrypt.enable_decryption Enable AES256-GCM decryption. By-
passes if disabled.

aes_decrypt.decrypt_key_id ID of the active decryption key. ’0’
means no active key.

aes_decrypt.enable_decryption Enable AES256-GCM decryption. By-
passes if disabled.

aes_decrypt.input_bytes Number of bytes received on data
socket.

aes_decrypt.input_packets Number of packets received on data
socket.

aes_decrypt.last_bad_key_id ID of the most recent key that could
not be used successfully.

aes_decrypt.output_bytes Number of bytes transmitted on data
socket.

aes_decrypt.output_packets Number of packets transmitted on
data socket.

aes_decrypt.packets_bypassed Number of packets bypassed due to
disabled decryption.

aes_decrypt.packets_dropped_bad_key Number of packets dropped due to
unknown/invalid decryption key.

aes_decrypt.packets_dropped_error Number of packets dropped due to
configuration errors in decryption.

aes_decrypt.packets_dropped_invalid_tag Number of packets dropped due to
invalid authentication tags.

aes_decrypt.packets_dropped_overflow Number of packets dropped due to
output queue overflow.

aes_decrypt.packets_dropped_undersized Number of packets dropped due to
undersized input.

Table 12.2: NanoGround adapter security status parameters.

53

NanoGround User Manual
Revision 1.4

12.9 NanoGround Endpoints
NanoGround provides a set of operational REST API endpoints to make it easier to manage the cryptographic
keys and their states:

• List keys (GET /crypto/keys) to list keys and their current state.
• Derive Keys (POST /crypto/derive-key) to derive new session keys from a master key.
• Change State (POST /crypto/change-key-state) to change the state of a key (e.g. active, sus-

pended, destroyed).

Note that only operator-level maintenance operations are exposed through the REST API. Any
administrative-level destructive or master-key related actions must be done through the ‘crypto’
client in the GOSH CLI service using the ‘crypto‘ client.

54

NanoGround User Manual
Revision 1.4

13 Updating NanoGround

A NanoGround installation is confined to its main directory. The main directory holds all state, configu-
ration and data associated with that NanoGround installation. By default, the main directory is named
nanoground-<version> where <version> is the version of NanoGround. If needed, a different name
can be chosen during installation using the -t option of the install.sh script. Alternatively, the main
directory can be renamed after installation using the bash mv command.

To install a new version of NanoGround, extract the new version of the installer script and run as described
in Section 2. This creates a new main directory with the new version of NanoGround. Use the destroy.sh
script for the old NanoGround deployment before starting the new one. To revert back to the old version,
use the destroy.sh script for the new NanoGround deployment and start the old one. The different
NanoGround deployments cannot run simultaneously but all state, configuration, and data is completely
isolated between them.

55

NanoGround User Manual
Revision 1.4

14 References

[1] SmartBear Software
Software tool
Swagger UI
Available at https://swagger.io/tools/swagger-ui/
Cited on page 10

[2] Prometheus / OpenMetrics Working Group
Metrics Data Interchange Format Specification
Prometheus Exposition Format
Mar. 2022, 1.0
Available at https : / / github . com / prometheus / OpenMetrics / blob / main / specification /
OpenMetrics.md
Cited on page 13.

[3] Prometheus Authors
Time-series database and monitoring software
Prometheus
Available at https://prometheus.io/
Cited on page 13

[4] Grafana Labs
Metrics, logs, and traces collection software
Grafana Agent
Available at https://grafana.com/docs/agent/latest/
Cited on page 13

[5] SmartBear Software
API client and server code generation tool
Swagger Codegen
Available at https://github.com/swagger-api/swagger-codegen
Cited on page 13

[6] rsync(1)
Unix manual page
Available at https://man7.org/linux/man-pages/man1/rsync.1.html
Cited on page 32

[7] Timescale Inc.
Time-series database
TimescaleDB
Available at https://www.timescale.com/
Cited on pages 40, 41

[8] GomSpace
TN 1069542
NanoCom Link and AX2150 Information Security
Cited on page 44

[9] Consultative Committee for Space Data Systems (CCSDS)
Magenta Book 354.0-M-1
Symmetric Key Management
Dec. 2023, Issue 1
Available at https://public.ccsds.org/Pubs/354x0m1.pdf
Cited on pages 45, 46.

56

https://swagger.io/tools/swagger-ui/
https://github.com/prometheus/OpenMetrics/blob/main/specification/OpenMetrics.md
https://github.com/prometheus/OpenMetrics/blob/main/specification/OpenMetrics.md
https://prometheus.io/
https://grafana.com/docs/agent/latest/
https://github.com/swagger-api/swagger-codegen
https://man7.org/linux/man-pages/man1/rsync.1.html
https://www.timescale.com/
https://public.ccsds.org/Pubs/354x0m1.pdf

	List of Figures
	List of Tables
	List of Listings
	List of Abbreviations
	Introduction
	Purpose
	Scope
	Structure
	Related Documents

	Getting Started
	Included Components
	Dependencies
	Installing Docker
	Installing Python

	Installation
	Unpacking NanoGround
	Installing NanoGround
	Configuring NanoGround Deployment
	Starting NanoGround
	Accessing NanoGround

	System Overview
	Configuration and Status Monitoring
	Configuration Endpoint
	Listing Available Configuration Parameters
	Retrieving a Configuration Parameter Value
	Changing a Configuration Parameter Value

	Status Endpoint
	Listing Available Status Parameters
	Retrieving a Status Parameter Value
	Retrieving Status Parameter Values in Bulk

	Integrating With Configuration and Status api

	Connecting with NanoCom Link SX
	Kratos qRadio for S-band
	Kratos qMR/qRX for X-band
	ksat Lite for S- and X-band
	Newtec MDM9000 for X-band
	Leaf Space Leaf Line TTC for S-band
	Custom Equipment for S- and X-band
	Uplink
	Downlink

	Connecting with NanoCom AX2150
	Ettus usrp
	Doppler Compensation

	ksat Lite
	Leaf Space Leaf Line TTC for S-band
	RS-422 via Cable

	Accessing IPv4 Network
	Configuring the Network Interface
	Accessing NanoCom Link SX Remotely
	Transferring Files to/from NanoCom Link SX
	Routing ipv4 via a NanoCom Link SX
	Accessing NanoCom AX2150

	Accessing CSP Network
	Configuring the Network Address and Routing
	Sending and Receiving csp Packets
	Using Multiple Radio Uplinks

	Using gosh cli
	Accessing gosh cli
	Available Commands
	Programmatic Access to gosh cli

	Receiving and Accessing Beacon Data
	Beacon System Overview
	Providing Beacon Specifications
	Receiving Beacon Data Over csp
	Receiving Beacon Data From Files
	Accessing Parsed Received Data

	Receiving and Accessing GSUFTP Data
	gsuftp Overview
	Persistence of Received Files
	Accessing Received Files
	Monitoring

	Security
	Installation Secrets
	Key Management
	Master Keys
	Session Keys
	Invocation Counter
	Protection Against Replay Attacks
	Key States
	Automatic Key Rollover

	Key Storage
	Preparing master keys
	Deriving session keys
	Operational Workflows
	Before Launch
	After Launch

	Enabling the Security Feature
	Security Telemetry
	NanoGround Endpoints

	Updating NanoGround
	References

